- #1
zachattackback
- 9
- 0
Homework Statement
A 30.0 kg block is resting on a flat horizontal table. On top of this block is resting a 15.0 kg block, to which a horizontal spring is attached. The spring constant of the spring is 325 N/m. The coefficient of kinetic friction between the lower block and the table is 0.600, and the coefficient of static friction between the two blocks is 0.900. A horizontal force T is applied to the lower block toward the spring. This force is increasing in such a way to keep the blocks moving at a constant speed. At the point where the upper block begins to slip on the lower block, determine (a) the amount by which the spring is compressed and (b) the magnitude of the Force T
Homework Equations
F=kx
Ff= uma
Fw=mg
The Attempt at a Solution
we did a problem like this without the spring and i did it like this
Fk1=u1mg
Fk2=u2u1mg
Fk1+Fk2=FT
u1mg+u1u2mg=FT
.9(15)(9.8)+.6(.9)(15+30)(9.8)=FT
370.44=Ft
taht migth be right i don't know if that is or how you ahd a spring putting a force on the top block
please help me get started