Hello, Yankel!
I've been trying to solve this system of equations: .]\left|\begin{array}{ccc|c} k&1&1 & 1 \\ 1&k&1 & 1 \\ 1&1&k & 1 \end{array}\right|
I need to find values of k for which the system has
an infinite number of solutions, no solution, and a single solution.
The system has no solution if the determinent is zero.
D \;=\;\begin{vmatrix}k&1&1 \\ 1&k&1 \\ 1&1&k\end{vmatrix} \;=\;k\begin{vmatrix}k&1\\1&k\end{vmatrix} - 1\begin{vmatrix}1&1\\1&k\end{vmatrix} + 1\begin{vmatrix}1&k \\ 1&1\end{vmatrix} \;=\;0
. . k(k^2-1) - (k-1) + (1-k) \:=\:0 \quad\Rightarrow\quad k^3 - k - k + 1 + 1 - k \:=\:0
. . k^3 - 3k + 2 \:=\:0 \quad\Rightarrow\quad (k-1)^2(k+2) \:=\:0 \quad\Rightarrow\quad k \:=\: 1,\:\text{-}2
The system has no solutions if k = 1 or k = \text{-}2.~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~Solve the system.
\text{We have: }\:\left|\begin{array}{ccc|c} k&1&1&1 \\ 1&k&1&1 \\ 1&1&k&1\end{array}\right|
\begin{array}{c}\text{Switch} \\ R_1 \& R_2 \\ \end{array}\:\left|\begin{array}{ccc|c} 1&k&1&1 \\ k&1&1&1 \\ 1&1&k&1 \end{array}\right|
\begin{array}{c} \\ \\ R_2-kR_1 \\ R_3-R_1 \end{array}\:\left|\begin{array}{ccc|c}1&k&1&1 \\ 0&1-k^2 & 1-k & 1-k \\ 0 & 1-k & k-1 & 0 \end{array}\right|
\begin{array}{c} \\ \\ \\ \tfrac{1}{1-k^2}R_2 \\ \tfrac{1}{1-k}R_3 \end{array}\:\left|\begin{array}{ccc|c} 1&k&1 \\ 0&1&\tfrac{1}{k+1} & \tfrac{1}{k+1} \\ 0 & 1 & \text{-}1 & 0 \end{array}\right|
\begin{array}{c}R_1 - kR_2 \\ \\ \\ \\ R_3-R_2 \end{array}\:\left|\begin{array}{ccc|c}1 & 0 & \tfrac{1}{k+1} & \tfrac{1}{k+1} \\ 0 & 1 & \tfrac{1}{k+1} & \tfrac{1}{k+1} \\ 0 & 0 & \text{-}\tfrac{k+2}{k+1} & \text{-}\tfrac{1}{k+1} \end{array}\right|
\begin{array}{c}\\ \\ \\ \\ \\ \\ \text{-}\tfrac{k+1}{k+2}R_3 \end{array}\:\left|\begin{array}{ccc|c} 1 & 0 & \tfrac{1}{k+1} & \tfrac{1}{k+1} \\ 0&1&\tfrac{1}{k+1} & \tfrac{1}{k+1} \\ 0&0&1& \tfrac{1}{k+2} \end{array}\right|
\begin{array}{c}R_1 - \tfrac{1}{k+1}R_3 \\ R_2 - \tfrac{1}{k+1}R_3 \\ \\ \\ \end{array}\:\left|\begin{array}{ccc|c}1&0&0 & \tfrac{1}{k+2} \\ 0&1&0 & \tfrac{1}{k+2} \\ 0&0&1 & \tfrac{1}{k+2} \end{array}\right|
The system has a solution for any k \ne \text{-}2That's strange!
If k =1, a solution is: .\left|\begin{array}{ccc|c}1&0&0 & \tfrac{1}{3} \\ 0&1&0 & \tfrac{1}{3} \\ 0&0&1 & \tfrac{1}{3} \end{array}\right|
Yet in the first stage, we saw that k = 1 makes the determinant zero.
Can anyone explain this?