Solving systems of equations using Jordan exchanges

Robb
Messages
225
Reaction score
8
Homework Statement
solve the following system of equations
Relevant Equations
##B_ij = A_{ij} - (A_{rj}/A_{rs})(A_{is})##
##B_{ir} = A_{is}/A_{rs}##
2u + 3v + 3w = 2
+ 5v + 7w = 2
6u + 9v + 8w = 5

##\begin{bmatrix}
2 & 3 & 3 & 2 \\
0 & 5 & 7 & 2 \\
6 & 9 & 8 & 5
\end{bmatrix}##

We have been asked to use Jordan exchange to solve the above equations. Can someone please explain how to determine the values for r, s for the equations above. I believe r is the row number of the dependent variable chosen to be switched with the column for the independent variable, being s. For example, if row 3 and column 3 are chosen, then s = 3 and r = 3. These positions are then used in the homework equations above. Thanks in advance!
 
Physics news on Phys.org
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top