Solving the Basic Mechanics Bullet Block Collision Problem

Click For Summary

Homework Help Overview

The problem involves a bullet with a mass of 5.0 g colliding with a 2.0 kg wooden block at rest on a table, where the bullet embeds itself in the block. The task is to find the initial speed of the bullet, considering the effects of friction as the block and bullet move a distance of 2.0 m.

Discussion Character

  • Conceptual clarification, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the conservation of energy and momentum in the context of the collision, questioning the assumptions about energy conservation due to inelastic collision effects and frictional work.

Discussion Status

Some participants have provided alternative calculations and interpretations regarding the conservation laws involved. There is an ongoing exploration of the implications of inelastic collisions and the role of friction, with no explicit consensus reached on the correct approach.

Contextual Notes

Participants note the importance of including units in numerical answers and express concerns about the clarity of notation used in the equations presented.

Arm
Messages
16
Reaction score
5
Homework Statement
A bullet with a mass of 5.0 g is fired horizontally into a 2.0 kg wooden block which is
resting on a horizontal table. The bullet stops in the block and the block and bullet
combination move 2.0 m. The coefficient of kinetic friction between the block and
surface of the table is 0.2. Find the initial speed of the bullet.
Relevant Equations
$$ KE = \frac{mv^2}{2} $$
$$ W = \Delta E = F * distance $$
$$ F_friction \le F_N * \mu $$
$$ g = 10 $$
$$ \frac{5E-3*v^2}{2} = (2 + 5E-3)(10)(0.2)(2) $$
v = 56.64
I just don't get how this is the wrong answer....it's just simple conservation of energy, right?
 
Physics news on Phys.org
Arm said:
Homework Statement: A bullet with a mass of 5.0 g is fired horizontally into a 2.0 kg wooden block which is
resting on a horizontal table. The bullet stops in the block and the block and bullet
combination move 2.0 m. The coefficient of kinetic friction between the block and
surface of the table is 0.2. Find the initial speed of the bullet.
Relevant Equations: $$ KE = \frac{mv^2}{2} $$
$$ W = \Delta E = F * distance $$
$$ F_friction \le F_N * \mu $$
$$ g = 10 $$

$$ \frac{5E-3*v^2}{2} = (2 + 5E-3)(10)(0.2)(2) $$
v = 56.64
I just don't get how this is the wrong answer....it's just simple conservation of energy, right?
Energy is not conserved. The bullet deforms the block and generates heat in the process. It an inelastic collision. Also, friction is doing non-conservative work on the block. Linear Momentum is conserved immediately before and after the collision.
 
  • Like
Likes   Reactions: Arm
erobz said:
Energy is not conserved. The bullet deforms the block and generates heat in the process. It an inelastic collision. Also, friction is doing non-conservative work on the block. Linear Momentum is conserved immediately before and after the collision.
$$ (5E-3)(v_1)=(5E-3+2)(v_2) $$
$$ \frac{1}{2} (5E-3+2)({v_2}^2)=(5E-3+2)(10)(0.2)(2) $$
$$ v_2 = 2.83 $$
$$ (5E-3)(v_1)=(5E-3+2)(2.83) $$
$$ v_1 = 1134 $$
thanks
 
  • Like
Likes   Reactions: erobz
Arm said:
$$ (5E-3)(v_1)=(5E-3+2)(v_2) $$
$$ \frac{1}{2} (5E-3+2)({v_2}^2)=(5E-3+2)(10)(0.2)(2) $$
$$ v_2 = 2.83 $$
$$ (5E-3)(v_1)=(5E-3+2)(2.83) $$
$$ v_1 = 1134 $$
thanks
For future reference that notation is difficult to parse. Just leave it all variables next time. I kept thinking you were taking 5 times some quantity ##E## subtracting random numbers!
 
Also final numerical answers without units are meaningless. If I told you that I make two million a year, you might think I live on easy street. Not so fast. If the units of the two million is Ugandan shillings, that translates to $500.00 USD waaaay below the poverty line.
 
  • Like
Likes   Reactions: erobz

Similar threads

  • · Replies 6 ·
Replies
6
Views
771
Replies
25
Views
2K
Replies
17
Views
2K
Replies
21
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 9 ·
Replies
9
Views
7K
  • · Replies 10 ·
Replies
10
Views
4K
Replies
1
Views
1K