Solving the Stress-Energy Tensor Problem

Azrael84
Messages
34
Reaction score
0
Hi,

How would go about arguing that the Stress-Energy tensor is actually a tensor based on how it must be linear in both it's arguments?
I'm thinking it requires one 1-form to select the component of 4-momentum (e.g. \vec{E}=<\tilda{dt} ,\vec{P}> ) and also one 1-form to define the surface (e.g \tilda{dt} defining surfaces of constant t, so giving us densities etc).

I know that T^{\alpha \beta}=T(\tilda{dx^{\alpha}}, \tilda{dx^{\beta}}). Not sure how one would argue that it therefore must be linear in these arguments?
 
Physics news on Phys.org
The intuitive approach I take is that the stress-energy tensor just represents the amount of energy, and momentum, per unit volume.

If you double the volume, you double the amount of energy and momentum contained (assuming a small volume and that the distribution is smooth when the volume is small enough) which is why it's linear with respect to the vector or one-form that represents the volume.

We already know that the energy-momentum 4-vector is a vector and is appropriately additive.

The tricky part is why we represent a volume with a vector or one-form. In the language of differential forms, dx^dy^dz , where ^ is the "wedge product" represents a volume element - but this three form has a dual, which is a vector (or one form).

You can think of it as representing a volume element by a vector (or one-form, but I think of it as a vector) that points in the time direction perpendicular to the volume, and whose length represents the size of the volume.
 
pervect said:
The tricky part is why we represent a volume with a vector or one-form. In the language of differential forms, dx^dy^dz , where ^ is the "wedge product" represents a volume element - but this three form has a dual, which is a vector (or one form).

You can think of it as representing a volume element by a vector (or one-form, but I think of it as a vector) that points in the time direction perpendicular to the volume, and whose length represents the size of the volume.

That's an interesting way of looking at it pervect. I see it quite differently (again from the Schutz book mainly), seeing one-forms as definining constant surfaces, e.g. dx (twiddle) defines surfaces of constant x (basically the same idea as in Vector calc whereby the vector gradient defines surfaces of constant phi, say). With this notion you can then also think of another one form selecting which component of the 4-momentum you want to consider via the relation, e.g. \vec{E}=<\tilda{dt} ,\vec{P}> ) , the one form dt, selects the energy comp.

So feeding both one forms into T, say for e.g. dt, dx...to get the T^{tx} component, tells us we want to look at energy flux through constant x sufaces.


What I don't understand is how linearity is implied by these physical considerations, since what does feeding T, say 2dt mean? does that really mean twice the volume?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top