Bashyboy
- 1,419
- 5
Hello,
I have tried computing the following integral three times now, and I can not figure out what I am doing wrong.
The integral is 100 \int \frac{h^2-20h}{(h-10)^2} dh, which wolfram calculates as 100 \int \frac{h^2-20h}{(h-10)^2} dh = 100 (-h - \frac{100}{h-10} + c ).
Here is one sample of my work:
Using integrating by parts, let u = h^2 - 20h, which becomes \frac{du}{dh} = 2h - 20. Multiplying both sides by the differential u, we get \frac{du}{dh} dh = (2h-20)dh. The definition of the differential of u is du = \frac{du}{dh} dh. Making this substitution, du = (2h - 20) dh. Let dv = \frac{dh}{(h-10)^2}. Integrating both sides, v = \frac{1}{h-10}.
100 \int \frac{h^2-20h}{(h-10)^2} dh = 100 \left[ (h^2-20h) \left(\frac{1}{h-10} \right) - \int \frac{2h-20}{h-10} dh \right] \implies
100 \int \frac{h^2-20h}{(h-10)^2} dh = 100 \left[\frac{h^2-20h}{h-10} - 2 \int \frac{h-10}{h-10} dh \right] \implies
100 \int \frac{h^2-20h}{(h-10)^2} dh = 100 \left[\frac{h^2-20h}{h-10} - 2 \int dh \right] \implies
100 \int \frac{h^2-20h}{(h-10)^2} dh = 100 \left[\frac{h^2-20h}{h-10} - 2h + c \right]
which is not the same...
Can anyone see what I might have done wrong?
I have tried computing the following integral three times now, and I can not figure out what I am doing wrong.
The integral is 100 \int \frac{h^2-20h}{(h-10)^2} dh, which wolfram calculates as 100 \int \frac{h^2-20h}{(h-10)^2} dh = 100 (-h - \frac{100}{h-10} + c ).
Here is one sample of my work:
Using integrating by parts, let u = h^2 - 20h, which becomes \frac{du}{dh} = 2h - 20. Multiplying both sides by the differential u, we get \frac{du}{dh} dh = (2h-20)dh. The definition of the differential of u is du = \frac{du}{dh} dh. Making this substitution, du = (2h - 20) dh. Let dv = \frac{dh}{(h-10)^2}. Integrating both sides, v = \frac{1}{h-10}.
100 \int \frac{h^2-20h}{(h-10)^2} dh = 100 \left[ (h^2-20h) \left(\frac{1}{h-10} \right) - \int \frac{2h-20}{h-10} dh \right] \implies
100 \int \frac{h^2-20h}{(h-10)^2} dh = 100 \left[\frac{h^2-20h}{h-10} - 2 \int \frac{h-10}{h-10} dh \right] \implies
100 \int \frac{h^2-20h}{(h-10)^2} dh = 100 \left[\frac{h^2-20h}{h-10} - 2 \int dh \right] \implies
100 \int \frac{h^2-20h}{(h-10)^2} dh = 100 \left[\frac{h^2-20h}{h-10} - 2h + c \right]
which is not the same...
Can anyone see what I might have done wrong?
Last edited: