Spherical Conductors: Voltage Calculation & Equilibrium | ρs=ρ0cos2theta

AI Thread Summary
The discussion revolves around calculating the voltage at point O for two tangent spherical conductors with a given surface charge density ρs=ρ0cos2theta. Participants explore the integration of charge density and the application of Gauss's law to derive the voltage, with initial calculations yielding V=ρ0R/(8ε0). Confusion arises regarding the integration limits and the use of polar coordinates, prompting a request for clarification and diagrams. The importance of accurately defining angles in three-dimensional space is emphasized, leading to a consensus that the textbook formula for charge density is indeed valid. The conversation highlights the necessity of visual aids for better understanding complex geometrical relationships in electrostatics.
pitbull
Gold Member
Messages
25
Reaction score
1

Homework Statement


Given two spherical conductors of radius R and tangent at O, both are charged and in equilibrium with surface charge density ρs0cos2theta. Calculate:
a) Voltage of both spheres at O. (SOLUTION: V=2ρ0R/(3ε0)
(...)

Homework Equations

The Attempt at a Solution


So I tried to solve it, first saying that both have the same voltage on its surface, thus, the voltage at point O is the same as voltage anywhere else on the surface of any of those spheres. I integrated ρs on the surface on one sphere, (R between 0 and R, and theta between 0 and 2pi), and I got a charge of R2ρ0pi/4 on one sphere,
Then I use Gauss to find the Electric field made by such sphere and integrate to find the voltage on the surface of the sphere, and I got V=ρ0R/(8ε0). I cannot find what's wrong
 
Physics news on Phys.org
Where theta is...?
I'm a bit puzzled, though. In principle, one could deduce the surface charge distribution from the total charge and other information. Are we to suppose that the given formula is the solution? Or is 'conducting' a mistake here?
 
I integrated ρs on the surface on one sphere, (R between 0 and R, and theta between 0 and 2pi), and I got a charge of R2ρ0pi/4 on one sphere,
Can you show what you did ? A sphere sounds three-dimensional. What happened to ##\phi## and why do you let ##\theta## go from 0 to ##2\pi## ? What do you think the charge density at O is ?

A drawing might make things a lot clearer, also for potential helpers (see the confusion with haru, who will help you further, since it's past my bedtime here :) )
 
haruspex said:
Where theta is...?
I'm a bit puzzled, though. In principle, one could deduce the surface charge distribution from the total charge and other information. Are we to suppose that the given formula is the solution? Or is 'conducting' a mistake here?

BvU said:
Can you show what you did ? A sphere sounds three-dimensional. What happened to ##\phi## and why do you let ##\theta## go from 0 to ##2\pi## ? What do you think the charge density at O is ?

A drawing might make things a lot clearer, also for potential helpers (see the confusion with haru, who will help you further, since it's past my bedtime here :) )

The solution is not a formula, it is just what the textbook gives as a solution. I don't know why I was thinking of polar coordinates, so I have the wrong limits for the integral o0). I just saw the drawing. It was on the back of the page, so now it should make sense. But now that I saw the drawing, I can't calculate ds for the integral
 

Attachments

  • drawing.png
    drawing.png
    2.3 KB · Views: 484
pitbull said:
The solution is not a formula, it is just what the textbook gives as a solution. I don't know why I was thinking of polar coordinates, so I have the wrong limits for the integral o0). I just saw the drawing. It was on the back of the page, so now it should make sense. But now that I saw the drawing, I can't calculate ds for the integral
OK, the diagram helps. With theta defined that way, I confirm that the formula for charge density is indeed a solution.
But it's easier to work in terms of angle subtended at the centre of the sphere. Let A be the point where the chord shown touches the sphere at top right. What angle does the chord OA subtend at the centre of the sphere? Call this angle ##\phi##. Consider the circular band width ##d\phi## passing through A. What potential does that produce at O?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top