Spherical Harmonics: Proving Y_L^M(0,phi)

Elliptic
Messages
33
Reaction score
0

Homework Statement



Prove that

{Y_{L}^{M}\left ( 0,\varphi \right )=\left ( \frac{2L+1}{4\pi } \right )^{1/2}\delta _{M,0}

Homework Equations



Y_{L}^{M}\left ( \theta,\varphi \right )=\left ( \frac{(2L+1)(L-M)!}{4\pi(L+M)! } \right )^{1/2}P_{L}^{M}(cos\theta )e^{im\varphi }

\int_{\varphi =0}^{2\pi }\int_{\theta =0}^{\pi }Y_{L1}^{M1}\left ( \theta ,\varphi \right )Y_{L2}^{M2}\left ( \theta,\varphi \right )sin\theta d\theta d\varphi = \delta _{N1,N2}\delta _{M1,M2}

The Attempt at a Solution



I think i need integrate/combine relevant equations in first equation,but ...?
 

Attachments

  • CodeCogsEqn.gif
    CodeCogsEqn.gif
    5.9 KB · Views: 593
Last edited:
Physics news on Phys.org
written in latex
 
I have proved the claim. Task completed.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top