Spin-dependent Hamiltonian of two particles

Jufro
Messages
92
Reaction score
8

Homework Statement


Two spin-half particles with spins S1 and S2 interact with a spin-dependent Hamiltonian H=λS1*S2 (the multiplication is a dot product and is a positive constant). Find the eigenstates and eigenvalues of H in terms of |m1,m2>, where (hbar)m1 and (hbar)m2 are the z-components of the two spins.


Homework Equations


Sx |m>=1/2(Sp-Ss) |m>
Sy |m>=1/2i(Sp+Ss) |m>
Sz |m>=(hbar)m |m>
Sp=(hbar)√[s(s+1)-m(m+1)]
Ss=(hbar)√[s(s+1)-m(m-1)]

The Attempt at a Solution


S1*S2=S1xS2x+S1yS2y+S1zS2z

S1x=S2x=S1y=S2y=0. I said this because the problem only mentioned z-component and most problems only talk about Sz.

H|m1,m2>=λSz1Sz1|m1,m2>

H |1/2,1/2> = λ*(hbar)^2 (1/2)(1/2) |1/2,1/2> = λ*(hbar)^2/4 |1/2,1/2>
H |-1/2,1/2> = λ*(hbar)^2 (-1/2)(1/2) |1/2,1/2> = -λ*(hbar)^2/4 |-1/2,1/2>
H |1/2,-1/2> = λ*(hbar)^2 (1/2)(-1/2) |1/2,1/2> = -λ*(hbar)^2/4 |1/2,-1/2>
H |-1/2,-1/2> = λ*(hbar)^2 (-1/2)(-1/2) |-1/2,-1/2> = λ*(hbar)^2/4 |-1/2,-1/2>

Is this my final answer? Am I close? Or was I completely off.
 
Physics news on Phys.org
Jufro said:

Homework Statement


Two spin-half particles with spins S1 and S2 interact with a spin-dependent Hamiltonian H=λS1*S2 (the multiplication is a dot product and is a positive constant). Find the eigenstates and eigenvalues of H in terms of |m1,m2>, where (hbar)m1 and (hbar)m2 are the z-components of the two spins.


Homework Equations


Sx |m>=1/2(Sp-Ss) |m>
Sy |m>=1/2i(Sp+Ss) |m>
Sz |m>=(hbar)m |m>
Sp=(hbar)√[s(s+1)-m(m+1)]
Ss=(hbar)√[s(s+1)-m(m-1)]

The Attempt at a Solution


S1*S2=S1xS2x+S1yS2y+S1zS2z

S1x=S2x=S1y=S2y=0. I said this because the problem only mentioned z-component and most problems only talk about Sz.
Those are operators. You can't arbitrarily set them equal to 0.

H|m1,m2>=λSz1Sz1|m1,m2>

H |1/2,1/2> = λ*(hbar)^2 (1/2)(1/2) |1/2,1/2> = λ*(hbar)^2/4 |1/2,1/2>
H |-1/2,1/2> = λ*(hbar)^2 (-1/2)(1/2) |1/2,1/2> = -λ*(hbar)^2/4 |-1/2,1/2>
H |1/2,-1/2> = λ*(hbar)^2 (1/2)(-1/2) |1/2,1/2> = -λ*(hbar)^2/4 |1/2,-1/2>
H |-1/2,-1/2> = λ*(hbar)^2 (-1/2)(-1/2) |-1/2,-1/2> = λ*(hbar)^2/4 |-1/2,-1/2>

Is this my final answer? Am I close? Or was I completely off.
Read about the addition of angular momentum. For this problem, consider ##(\vec{S}_1 + \vec{S}_2)^2##.
 
I get what you are saying about the operators. That was just a bad attempt at trying to simply the problem. I get that (S1+S2)^2 would yield the total spin, but how would that play into the Hamiltonian.
 
Expand ##(\vec{S}_1 + \vec{S}_2)^2## it out. What do you get?
 
Thank you, I had figured it out last night with your hint. The expansion leaves S1^2+S2^2+2S1S2. Then the dot product of S1S2 gave S1xS1y+S2xS2y+S1zS2z. The Z component was simple that was the m(hbar) and the x and y components I wrote in terms of the ladder operators. Thanks again :)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top