Spinning disk, friction and pure roll

AI Thread Summary
The discussion revolves around a physics problem involving a uniform solid disk transitioning from rotation to pure rolling on a surface. Key points include determining the angular speed of the disk when pure rolling starts, calculating the fractional change in kinetic energy during this transition, and analyzing the time interval and distance traveled before pure rolling begins. Participants express confusion about the equations used, particularly regarding the velocity of the disk's center of mass and the signs in the torque equations. Clarifications are provided on the dynamics involved, emphasizing the importance of understanding the forces and torques acting on the disk during the transition. Overall, the conversation aims to deepen comprehension of rotational motion and frictional effects in this context.
CrunchBerries
Messages
58
Reaction score
8

Homework Statement


[/B]
A uniform solid disk of radius R is set into rotation with an angular speed ωi about an axis through its center. While still rotating at this speed, the disk is placed into contact with a horizontal surface and immediately released as shown in figure below (a) What is the angular speed of the disk once pure rolling takes place? (b) Find the fractional change in kinetic energy from the moment the disk is set down until pure rolling occurs. (c) Assume the coefficient of friction between disk and surface is μ. What is the time interval after setting the disk down before pure rolling motion begins? (d) How far does the disk travel before pure rolling begins?

Homework Equations



τ = r x ΣF = ΣIα
L = Iω
ΔKr = 1/2Iω^2
I = 1/2mR^2

The Attempt at a Solution



The full solution is in the manual;

[1] μmg = ma = m (v-0) / t

[2] μmgt = mv

[3] -μmgR = Iα = (1/2mR^2) (ω-ωi) / t

[4] -μmgRt = 1/2mR^2ω - 1/2mR^2ωi -> [5] Rωi - 2μgt = Rω

[6] Rωi - 2v = Rω -> Rωi - 2Rω = Rω -> ω = ωi / 3

My questions:

At first I tried an energy approach with Krot and Ufriction turning into Krot and Ktrans. My solution differed quite a bit from the textbook solution. However, I do have questions about the solution itself;

In [1], why is there (v - 0) ? v is never zero during that transition, only a = 0 when v reaches μs. Correct? I think they mean v = at -> a = v / t in general? Maybe zero is the speed of the surface?

In [3] the sign turns negative. I am guessing it is because they mean τ = R x -μmg opposes the rotation of the wheel? And the rotation of the wheel's effective torque Iα is acting the other way?

In [3] α is replaced with (ω - ωi) / t in the same manner as in [1], but this time there is a ωi unlike [1].

The rest of the entire problem is straightforward.I just really want to find a way to understand this problem properly. I have spent at least two hours running through concepts in my head, drawings and scribbles..

Thank you
 
Physics news on Phys.org
Hello.

CrunchBerries said:
In [1], why is there (v - 0) ? v is never zero during that transition, only a = 0 when v reaches μs. Correct?
v represents the velocity of the center of mass of the wheel. What is the value of v at the initial instant when the wheel is released?

In [3] the sign turns negative. I am guessing it is because they mean τ = R x -μmg opposes the rotation of the wheel? And the rotation of the wheel's effective torque Iα is acting the other way?
Yes. A free body diagram of the wheel should make this clear.

In [3] α is replaced with (ω - ωi) / t in the same manner as in [1], but this time there is a ωi unlike [1].
Hopefully, the comments regarding [1] will clear this up.
 
  • Like
Likes CrunchBerries
*SLAPS FOREHEAD*

I need more coffee.

Thank you for taking your time, I appreciate it! I feel better now hahaha..
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top