A Spinor indices on Yukawa coupling terms in electroweak sector

spaghetti3451
Messages
1,311
Reaction score
31
In the electroweak sector, we define the left-handed Weyl fields ##l## and ##\bar{e}## in the representations ##(2,-1/2)## and ##(1,+1)## of ##SU(2) \times U(1)##. Here, ##l## is an ##SU(2)## doublet: ##l = \begin{pmatrix} \nu\\ e \end{pmatrix}.##

The Yukawa coupling in the electroweak sector is of the form ##-y\epsilon^{ij}\phi_{i}l_{j}\bar{e} + \text{h.c.},## where ##\phi## is the HIggs field in the representation ##(2,-1/2)##.

After spontaneous symmetry breaking, in the unitary gauge, the Higgs field becomes ##\phi = \frac{1}{\sqrt{2}}\begin{pmatrix} v+H\\ 0 \end{pmatrix}## and

the Yukawa coupling becomes ##-\frac{1}{\sqrt{2}}y(v+H)(e\bar{e}+\bar{e}^{\dagger}e^{\dagger}) = -\frac{1}{\sqrt{2}}y(v+H)\bar{\varepsilon}\varepsilon,##

where we have defined a Dirac field for the electron, ##\varepsilon = \begin{pmatrix} e\\ e^{\dagger} \end{pmatrix}.##

----------------------------------------------------------------------------------------------------------------------

My questions are the following:

1. I notice that ##\bar{e}## is a left-handed Weyl field whereas ##\bar{e}^{\dagger}## is a right-handed Weyl field. Does this mean that taking the hermitian conjugate change the handedness of a Weyl field?

2. Observe the Yukawa coupling after spontaneous symmetry breaking: ##e\bar{e}+\bar{e}^{\dagger}e^{\dagger}##. How do I make sense of the spinor indices here: is ##e## a row vector or a column vector? Is ##\bar{e}## a row vector or a column vector? What about their hermitian conjugates?

3. I notice that the Dirac field for the electron is ##\varepsilon = \begin{pmatrix} e\\ e^{\dagger} \end{pmatrix}.## ##e## and ##\bar{e}^{\dagger}## appear to be column vectors. Does this mean that ##\bar{e}## is a row vector? But then, ##e\bar{e}## becomes a matrix and is not a scalar, as is expected for a term in a Lagrangian!
 
Physics news on Phys.org
bummpppp!
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Replies
22
Views
5K
Replies
6
Views
4K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
11
Views
2K
Replies
3
Views
2K
Back
Top