QuantumP7
- 66
- 0
Homework Statement
Suppose the functions f and g have the following property: for all ε > 0 and all x,
If 0 < \left| x-2 \right| < \sin^{2} \left( \frac{\varepsilon^{2}}{9} \right) + \varepsilon, then \left| f(x) - 2 \right| < \varepsilon.
If 0 < \left| x - 2 \right| < \varepsilon^{2} then \left| g(x) - 4 \right| < \varepsilon.
For each \varepsilon > 0 find a \delta > 0 such that for all x:
ii) if 0 < \left| x-2 \right| < \delta, then \left| f(x)g(x) - 8 \right| < \varepsilon.
Homework Equations
The Attempt at a Solution
The solution book says:
We need: \left| f(x) - 2 \right| < min \left( 1, \frac{\varepsilon}{2 (\left| 4 \right| + 1)} \right) and \left| g(x) - 4 \right| < \frac{\varepsilon} {2 (\left| 2 \right|) + 1}.
My question is: How did they get these fractions in the solution? I've multiplied \left| f(x) - 2 \right| and \left| g(x) - 4 \right| to get \left| f(x)g(x) - 4f(x) - 2g(x) + 8 \right|. Am I going in the right direction?