Gregg
- 452
- 0
1. Let \mathbb{R}[x]_n^+ and } \mathbb{R}[x]_n^- denote the vector subspaces of even and odd polynomials in \mathbb{R}[x]_n
Show \mathbb{R}[x]_n=\mathbb{R}[x]_n^+ \oplus\mathbb{R}[x]_n^-
3. For every p^+(x) \in \mathbb{R}[x]_n^+ \displaystyle p^+(x)=\sum_{m=0}^n a_m x^m=p^+(-x)
So a_m = 0 for m=2k+1, k=0,1,2,... else a_m \in \mathbb{R}. Similarly, a_m=0 for m=2k, k=0,1,2,... if the function is odd.
p^+(x)=a_0+a_2x^2+a_4x^4+\cdots, a_m\in\mathbb{R}
p^-(x)=a_1x+a_3x^3+a_5x^5+\cdots a_m\in\mathbb{R}
p(x)=a_0+a_2x^2+a_4x^4+\cdots+a_1x+a_3x^3+a_5x^5+\cdots for every p(x)\in \mathbb{R}[x]_n. So every p(x) is some p^+(x) with some p^-(x). Is this enough? Is it better to find a basis for the two subspaces and show that the union of the two basis sets spans \mathbb{R}[x]_n ?
Show \mathbb{R}[x]_n=\mathbb{R}[x]_n^+ \oplus\mathbb{R}[x]_n^-
3. For every p^+(x) \in \mathbb{R}[x]_n^+ \displaystyle p^+(x)=\sum_{m=0}^n a_m x^m=p^+(-x)
So a_m = 0 for m=2k+1, k=0,1,2,... else a_m \in \mathbb{R}. Similarly, a_m=0 for m=2k, k=0,1,2,... if the function is odd.
p^+(x)=a_0+a_2x^2+a_4x^4+\cdots, a_m\in\mathbb{R}
p^-(x)=a_1x+a_3x^3+a_5x^5+\cdots a_m\in\mathbb{R}
p(x)=a_0+a_2x^2+a_4x^4+\cdots+a_1x+a_3x^3+a_5x^5+\cdots for every p(x)\in \mathbb{R}[x]_n. So every p(x) is some p^+(x) with some p^-(x). Is this enough? Is it better to find a basis for the two subspaces and show that the union of the two basis sets spans \mathbb{R}[x]_n ?