AtomSeven
- 8
- 0
Hi,
The divisor summatory function, D(x), can be obtained from \zeta^{2}(s) by D(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty}\zeta^{2}(w)\frac{x^{w}}{w}dw and I was trying to express \zeta^{2}(s) in terms of D(x) but I didnt succeed, could someone help?
The divisor summatory function, D(x), can be obtained from \zeta^{2}(s) by D(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty}\zeta^{2}(w)\frac{x^{w}}{w}dw and I was trying to express \zeta^{2}(s) in terms of D(x) but I didnt succeed, could someone help?