ST and TS have the same eigenvals

  • Thread starter Thread starter balletomane
  • Start date Start date
balletomane
Messages
25
Reaction score
0
Hi.

I need to prove that for S,T linear operators on V. ST and TS have the same eigenvalues. I've gotten as far as (say g is the eigenvalue and u is a nonzero vector): STu=gu so TS(Tu)=g(Tu). So TS has eigenvalue g corresponding to eigenvector Tu. But I don't know how to guarantee that Tu is nonzero. (Or how to resolve the possibility that it is zero)

Thanks for any help.
 
Physics news on Phys.org
If Tu is zero, what's STu?
 
If Tu=0

STu=0=gu, but u is nonzero, so g=0?

So does zero as an eigenvalue become a special case? Then would I do the nonzero eigenvalue case separately?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top