Automotive Standing mile race car twin engine heavy front end?

  • Thread starter Thread starter Roberto palacio
  • Start date Start date
  • Tags Tags
    Car Engine Race
AI Thread Summary
The discussion centers on the challenges of a twin LS1 engine setup in an '87 Brick Regal RWD platform, particularly regarding front-end weight and stability at high speeds. With a total engine weight of 760 lbs, half positioned ahead of the front axle, concerns arise about traction limitations and potential front-end lift during acceleration. While a heavier front end could enhance stability, it may also lead to swaying if not properly balanced. Adjustments to suspension geometry, spring rates, and dampening are crucial to accommodate the new weight distribution and improve handling. Overall, careful consideration of weight distribution and suspension tuning is essential for optimal performance.
Roberto palacio
Messages
6
Reaction score
0
got a twin ls1 standing mile car project I've been toying with for a while.My question is the engines have beeen fit in the engine bay with the rear motor having minimal setback to allow room for the front engine,the total weight for both engines is 760 lbs,half of that weight is ahead of the front axle vehicle is a 87 brick regal rwd platform,I know it will be traction limited off starting line but I'm not drag racing so the initially starting line traction isn't too much of a concern,would having a heavier front end help reduce front end lift at speed and keep it more stable,or would it lead to swaying and being unstable at high speed.
 

Attachments

  • IMG_0025.JPG
    IMG_0025.JPG
    8.6 KB · Views: 581
  • IMG_0031.JPG
    IMG_0031.JPG
    52 KB · Views: 558
  • IMG_0022.JPG
    IMG_0022.JPG
    57.5 KB · Views: 566
Engineering news on Phys.org
With the power of two LS engines, your acceleration might be traction-limited out to a pretty high speed. The power you can put to the ground at a given vehicle speed is Force x velocity, the force being the traction available at the drive wheels, and v being the vehicle's speed. (I'm assuming it is only rear wheel drive.) Just throwing this out there: if the engines can put 700 HP to the rear wheels, and you have 2000 pounds of traction, I calculate that you are traction-limited out to about 130 mph! You'd have to put better numbers into find out your actual traction-limit speed.

Your traction-limit acceleration value (in g's) will be reduced somewhat of course by having a relatively small percentage of the vehicle's weight on the drive wheels.

As for stability, you should find out your corner weights. FWD cars commonly have about 60/40 weight distribution, and you might not be too far off that now. Bonneville cars run a large percentage of their weight toward the front to increase stability, but I'm sure it can be overdone. Ideally, suspension spring rates should be proportioned for the new weight distribution.
 
congratulations if you managed to stuff in two engines in that car package
Without going into a lot of technical stuff, you got a real hand full there. This much weight on the front end will definitely change the whole geometry settings , handling, traction and safety.

Without knowing the empirical data like wheel base, % front to rear weight, , etc.. I can tell you the Center of Gravity is changed, polar moment, camber build, scrub radius, Roll Centers are not correct, stock springs, anti roll bars (sway bars) are wrong. same with dampers (shocks). Both front and rear!
I think you can get fairly good handling but will require a lot of rework.
 
You always want the weight of your engine as far back as possible to keep balance and weight down on the rear axle without lifting it up. with an engine hanging over the front axle you may need to weigh down the rear end to gain a better traction.
 
Randy Beikmann said:
With the power of two LS engines, your acceleration might be traction-limited out to a pretty high speed. The power you can put to the ground at a given vehicle speed is Force x velocity, the force being the traction available at the drive wheels, and v being the vehicle's speed. (I'm assuming it is only rear wheel drive.) Just throwing this out there: if the engines can put 700 HP to the rear wheels, and you have 2000 pounds of traction, I calculate that you are traction-limited out to about 130 mph! You'd have to put better numbers into find out your actual traction-limit speed.

Your traction-limit acceleration value (in g's) will be reduced somewhat of course by having a relatively small percentage of the vehicle's weight on the drive wheels.

As for stability, you should find out your corner weights. FWD cars commonly have about 60/40 weight distribution, and you might not be too far off that now. Bonneville cars run a large percentage of their weight toward the front to increase stability, but I'm sure it can be overdone. Ideally, suspension spring rates should be proportioned for the new weight distribution.

You might also want to (roughly) calculate longitudinal load transfer's effect on rear wheel traction since its probably going to be WOT and accelerating the entire time it is in the top gear.
 
Your front end is going to load the suspension more, obviously. You will want to get stiffer springs in the front and also look at a way to increase suspension dampening. Increasing suspension dampening will be necessary due to the fact that you will have more spring force to tame on rebound, as well as more momentum created if the compression or rebound stroke is too fast. You want the suspension to be stiffer than it is now, and you want it to react more deliberately, which requires dampening.

Another thing you should consider is wheelbase modifications. One way to help that car work correctly would be to move the front axle farther forward. This would move the fulcrum in such a way that more of the load center of gravity would be on the same side of the fulcrum as the rear wheels. It would also give better control over yaw because your wheelbase is longer.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top