A Static Gravitational Field: Why Must ##g_{m0} = 0##?

Kostik
Messages
274
Reaction score
32
TL;DR Summary
Explaining Dirac's assertion ("GTR", Ch. 16) that in a static gravitational field we must have ##g_{m0} = 0, m=1,2,3)##.
In Dirac's "General Theory of Relativity", he begins Chap 16, with "Let us consider a static gravitational field and refer it to a static coordinate system. The ##g_{\mu\nu}## are then constant in time, ##g_{\mu\nu,0}=0##. Further, we must have ##g_{m0} = 0, (m=1,2,3)##."

It's obvious that static ##\rightarrow g_{\mu\nu,0}=0##, but why must ##g_{m0} = 0## ?

What I can think of is this. First, think of ordinary 3D space. Suppose there is no curvature in one of the dimensions, say the ##x^1## dimension. Then the metric ##ds^2 = g_{mn} dx^m dx^n## should have no ##dx^1 dx^2## or ##dx^1 dx^3## terms, since translating along the ##x^1## coordinate direction should not alter how ##ds^2## depends upon ##x^2## or ##x^3##.

In the same way, there should be no ##dx^0 dx^m## terms in the metric if the curvature of spacetime is static in time.

Alternatively, if I make the change of coordinates ##x'^0=x^0+\text{constant}##, and ##x'^m=x^m## (##m=1,2,3##), and if the gravitational field is static, then ##g'_{\mu\nu}=g_{\mu\nu}## (because the time translation cannot alter spacetime intervals). Hence, ##g_{\mu\nu} dx'^\mu dx'^\nu = g_{\mu\nu} dx^\mu dx^\nu##, which implies there are no ##dx^0 dx^m## terms in the metric.

Is this the right way to explain Dirac's assertion?
 
Last edited:
  • Like
Likes dextercioby
Physics news on Phys.org
A static field is one in which the timelike Killing field is everywhere orthogonal to the spacelike surfaces. Thus a vector (1,0,0,0), parallel to the Killing field, must be orthogonal to all vectors (0,a,b,c) that lie in the spacelike planes. The only way that happens is if ##g_{m0}=0##.
 
  • Like
Likes cianfa72 and topsquark
Contrast this to a stationary spacetime.
 
  • Like
Likes cianfa72, vanhees71 and topsquark
Kostik said:
In Dirac's "General Theory of Relativity", he begins Chap 16, with "Let us consider a static gravitational field and refer it to a static coordinate system. The ##g_{\mu\nu}## are then constant in time, ##g_{\mu\nu,0}=0##. Further, we must have ##g_{m0} = 0, (m=1,2,3)##."
Note the key phrase: "and refer it to a static coordinate system". His assertion is only true for such a coordinate system.

The modern way of making this point would be to say that in a static spacetime it is always possible to find a coordinate chart with no ##g_{m0}## cross terms. This is because a static spacetime has a timelike Killing vector field that is hypersurface orthogonal. But it is not necessary for any coordinate chart on a static spacetime to have no ##g_{m0}## cross terms. It is only possible. (Whereas, as @Orodruin mentioned, in a spacetime that is stationary but not static, it is not possible to find such a coordinate chart.)
 
  • Like
Likes cianfa72, vanhees71, topsquark and 1 other person
PeterDonis said:
Note the key phrase: "and refer it to a static coordinate system". His assertion is only true for such a coordinate system.

The modern way of making this point would be to say that in a static spacetime it is always possible to find a coordinate chart with no ##g_{m0}## cross terms. This is because a static spacetime has a timelike Killing vector field that is hypersurface orthogonal. But it is not necessary for any coordinate chart on a static spacetime to have no ##g_{m0}## cross terms. It is only possible. (Whereas, as @Orodruin mentioned, in a spacetime that is stationary but not static, it is not possible to find such a coordinate chart.)
Can you explain / clarify what a "static coordinate system" is, in non-modern language (i.e., the way Dirac would have explained it in 1975)?
 
One where the components of ##g## do not depend on ##x^0## and surfaces of constant ##x^0## are orthogonal to the ##x^0## direction.
 
  • Like
Likes PeterDonis, topsquark and vanhees71
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top