- #1
- 304
- 14
- Homework Statement
- Attached below
- Relevant Equations
- Attached below
I don't know how to solve part c and d.
Attempt:
c) B_eff=B+e<M>
Substitute T_c into the equation in part b,
=> (B_eff-B)/e = Nμ_B tanh(B_eff/(N*e*μ_B))
Then?
Thank you.
Could you show what you got for part b?
A self-consistency equation for ##B_\textrm{eff}## means that you get an equation for ##B_\textrm{eff}## that depends on itself. You could solve it numerically by guessing the value of ##B_\textrm{eff}## in the hyperbolic tangent, then calculating ##B_\textrm{eff}## on the left-hand side, and iterate until the value of ##B_\textrm{eff}## doesn't change anymore.is it what a self-consistency equation mean?...
I did part c using your hintA self-consistency equation for ##B_\textrm{eff}## means that you get an equation for ##B_\textrm{eff}## that depends on itself. You could solve it numerically by guessing the value of ##B_\textrm{eff}## in the hyperbolic tangent, then calculating ##B_\textrm{eff}## on the left-hand side, and iterate until the value of ##B_\textrm{eff}## doesn't change anymore.
Your equation for (b) is correct. For (c), I think you can assume that ##B_\textrm{eff}## is small or, more properly
$$
\mu_\mathrm{B} B_\textrm{eff} \ll k T
$$
You didn't get the expected answer, which is given in the question. There is no need to keep the cubic terms.I did part c using your hint
Thank you, the answer I displayed above is for part d. The (T/T_C)^3 in the last line should be (T/T_C)^3/2. The expect term have no factor (T/T_C)^3/2, but there is one in my expression...You didn't get the expected answer, which is given in the question. There is no need to keep the cubic terms.
However, in part d the question says expand it to 3rd order?Above, you wrote
$$
B_\textrm{eff} = e N \mu_\mathrm{B} \left( \frac{B_\textrm{eff} \mu_\mathrm{B}}{kT} - \frac{B_\textrm{eff}^3 \mu_\mathrm{B}^3}{3 k^3T^3} \right)
$$
which means you took
$$
\tanh(x) \approx x - \frac{1}{3} x^3
$$
Try instead ##\tanh(x) \approx x##.
Sorry, I was looking at part (c). The solution to (d) is not obvious to me, I'll have to think a bit.However, in part d the question says expand it to 3rd order?