Statistical Physics - counting states

LiorE
Messages
38
Reaction score
0
1. Homework Statement [/b]
There are N 3-dimensional quantum harmonic oscillators, so the energy for each one is:
E_i = \hbar \omega (\frac{1}{2} + n_x^i + n_y^i + n_z^i). What is the total number of states from energy E_0 to E, and what is the density of states for E?

The Attempt at a Solution



In class they've shown that for a 1-D harmonic oscillator:

\Omega(E) = \frac{(\frac{E-E_0}{\hbar \omega} + N-1)!}{(\frac{E-E_0}{\hbar \omega})!(N-1)!} \delta E.

How did they get that? I Don't understand how it becomes (roughly) (\sum_i n_i + N) choose N. And so I really have no idea how to generalize it to 3D (even though I guess it should be just the same).
 
Physics news on Phys.org
In the one dimensional case:

E_0 = N hbar omega/2

Then

n_1 + n_2 + ...n_N = R (1)

where R = (E - E_0 )/(h omega)

So, you need to count the number of solutions of eq. (1). Then because we always specify a small energy interval delta E and count the number of states in that inteval, you need to multiply the answer by delta E/(h omega), because this is the number of possible values of R when E is specified with an uncertainty delta E.

Suppose I want to paint R objects with N colors. If n_j is the number of objects with color j, then all the n_j sum up to R, so any coloring is a solution of (1). Also, any solution of (1) defines a coloring. We can count the number of colorings by imagening a bog box with N compartments filled with the N types of paint. There are then N - 1 separation walls. We can then schematically denote any coloroing as a string:

oo|oooo|o|o...

where the "o" are the objects and the "|" are the separations between the compartments. The number of possible strings is thus given by:

Binomial[R + N-1,R] = (R+N-1)!/[R! (N-1)!]
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top