Statistical Thermodynamics - Help Wanted

asynja
Messages
15
Reaction score
0
Statistical Thermodynamics - Help Wanted :(

(My translation skills sucks, I hope it is understandable.)

Three spins, placed at vertices of an equilateral triangle, are put in the external magnetic field with density B. Hamiltonian of the system:
H = -J \sum_{<i,j>} s_{i} s_{j} - \gamma \hbar B \sum_{i=1}^3 s_{i}

where first sum runs over pairs of the nearest-neighbour spins and describes interactions between them, and the second sum represents spin interaction with external field; s_{i} can take values between +1/2 and -1/2. Sketch possible states of the system and calculate the partition function! How much is the magnetic susceptibility of this triplet of spins system at T=300K ?
Other data: J = 0.02 eV \gamma = e_{0}/m , where e_{0} and m are electron charge and mass. Volume, taken by this triplet of spins is 0.1 nm^3

My attempt of the solution was so unsuccessful that isn't worth wasting time writing it in latex. The problem is a form of Ising model; at class we did one problem of finding Z in 1D and much simpler hamiltonian. I thought I kind of understood it then, but it doesn't help me much with this problem.
Help? Thnx in advance.
 
Physics news on Phys.org


Hi asynja,

I'm not sure what the point of this problem is exactly, but the system is simple enough with only 2^3 = 8 states that you can list all the energies for computing the partition function explicitly. Is this how you're approaching the problem?

There is also a trick for rewriting the interaction term that makes the problem easier.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top