[Statistics] Conditional Probability questions?

KendrickLamar
Messages
26
Reaction score
0

Homework Statement



I've attached both the problems into one image to make life easier since problem 1 has a diagram and the other does not.

SqHcA.jpg


Homework Equations


Bayes Theorem : P(A|B)P(B) / [P(A|B)P(B) + P(A|B')P(B')]
B' = B Complement
Z39bp.jpg

The Attempt at a Solution


well for the first one
i don't understand what the P(A|B') is and the .849 is that referring to B'?
SO i did .001(.05) / [(.001(.05)) + P(A|B')(.849)] i don't know what that P(A|B') is so I am not sure where to go from there and the answer in the back of the book says .0099

for the 2nd problem
a.) i understand don't need help
b.) i don't know how to get P(AB) given the information provided
c.) well i can get this if i know part b since it would be .4 + .25 - P(AB)

thank u for ur help!
 
Last edited:
Physics news on Phys.org
It's not clear where your brackets end in Bayes's Theorem. Try this instead:
P(B|A) = P(A|B) *(P(B))/(P(A))
 
^ that doesn't seem to work, like I'm still not clear on when I'm supposed to use baye's theorem?

ah sorry forgot the final bracket it says this:

Bayes Theorem : P(A|B)P(B) / [P(A|B)P(B) + P(A|B')P(B')]

in the textbook it says that ah well here let me just take a picture of it:
Z39bp.jpg
 
also i think the 2nd one the conditional information of .7 is unecessary and it should just be that

P(AB) = P(A)*P(B) = (.4)(.25) = .1?
 
When you say that P(AB) = P(A) * P(B), you're assuming that the two events are mutually exclusive. But since P(A|B) = 0.7, we know that's not true (otherwise P(A|B) = P(A)). What you want is the probability of A and B (i.e. their intersection).
 
Also, the version of Bayes' Theorem you're using is more complex than you need to solve the first problem. The basic formula for conditional probability is

P(B|A) = P(B \cap A)/P(A)

So you know you're in A because that's given. So you want to know, what's the probability that you'll be in the (tiny) part of A that overlaps with B?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top