- #1
- 116
- 3
Homework Statement
I want to find the partial derivatives in the point [itex](0,0)[/itex] of the function [itex]f:\mathbb R^2\rightarrow\mathbb R[/itex] [itex]
f(x,y):=
\begin{cases}
0 & \text{if } (x,y) = (0,0) \\
\frac{y^5}{2x^4+y^4} & otherwise
\end{cases}
[/itex]
Homework Equations
Our definition of the partial derivatives in the direction [itex]\vec v = (v_1,v_2)[/itex] with [itex]\|\vec v \|_2 = 1[/itex] at the point [itex](0,0)[/itex]
[itex]D_v(f)(0,0)=\lim_{h\rightarrow 0} {\frac{f((0,0)+h\vec v)-f(0,0)}{h}}[/itex]
The Attempt at a Solution
Straight forward:
[itex]D_v(f)(0,0)=\lim_{h\rightarrow 0} {\frac{f((0,0)+h\vec v)-f(0,0)}{h}}=\lim_{h\rightarrow 0} {\frac{f(h(v_1,v_2))}{h}}=\lim_{h\rightarrow 0} {\frac{\frac{h^5v_2^5}{2h^4v_1^4+h^4v_2^4}}{h}}= \frac{v_2^5}{2v_1^4+v_2^4}[/itex] Then in the direction [itex]\vec v = (0,1),(y-direction)[/itex] the tangent slope should be [itex]\frac{1^5}{2*0^4+1^4}=1[/itex]
Here's my problem: When I evaluate the same thing in maple I get 0. Where's my error?
(I've attached a picture of maple)
Also I can't see from the graph that the tangent slope in the y-direction should be 0, I think.
Any feedback is very appreciated :)
Alex