daniel.e2718
- 10
- 0
I couldn't really think of a good title for this question, lol.
Is it possible that a real number exists that can only be expressed in exact form when that form must includes complex numbers?
For example, the equation
2 \, x^{3} - 6 \, x^{2} + 2 = 0
has the following roots
x_1 = -\frac{1}{2} \, {\left(\frac{1}{2} i \, \sqrt{3} +<br /> \frac{1}{2}\right)}^{\left(\frac{1}{3}\right)} {\left(i \, \sqrt{3} +<br /> 1\right)} - \frac{-i \, \sqrt{3} + 1}{2 \, {\left(\frac{1}{2} i \,<br /> \sqrt{3} + \frac{1}{2}\right)}^{\left(\frac{1}{3}\right)}} + 1
x_2 = -\frac{1}{2} \, {\left(-i \, \sqrt{3} + 1\right)} {\left(\frac{1}{2}<br /> i \, \sqrt{3} + \frac{1}{2}\right)}^{\left(\frac{1}{3}\right)} - \frac{i<br /> \, \sqrt{3} + 1}{2 \, {\left(\frac{1}{2} i \, \sqrt{3} +<br /> \frac{1}{2}\right)}^{\left(\frac{1}{3}\right)}} + 1
x_3 = {\left(\frac{1}{2} i \, \sqrt{3} +<br /> \frac{1}{2}\right)}^{\left(\frac{1}{3}\right)} +<br /> \frac{1}{{\left(\frac{1}{2} i \, \sqrt{3} +<br /> \frac{1}{2}\right)}^{\frac{1}{3}}} + 1
which have numerical approximations of
x_1 \approx 0.65270364
x_2 \approx -0.53208889
x_3 \approx 2.8793852
When I run these through Sage's simplify_full() command (five times, even), they just become single fractions.
Is this a CAS simplification thing or are there real numbers that simply cannot exist without complex numbers?
Is it possible that a real number exists that can only be expressed in exact form when that form must includes complex numbers?
For example, the equation
2 \, x^{3} - 6 \, x^{2} + 2 = 0
has the following roots
x_1 = -\frac{1}{2} \, {\left(\frac{1}{2} i \, \sqrt{3} +<br /> \frac{1}{2}\right)}^{\left(\frac{1}{3}\right)} {\left(i \, \sqrt{3} +<br /> 1\right)} - \frac{-i \, \sqrt{3} + 1}{2 \, {\left(\frac{1}{2} i \,<br /> \sqrt{3} + \frac{1}{2}\right)}^{\left(\frac{1}{3}\right)}} + 1
x_2 = -\frac{1}{2} \, {\left(-i \, \sqrt{3} + 1\right)} {\left(\frac{1}{2}<br /> i \, \sqrt{3} + \frac{1}{2}\right)}^{\left(\frac{1}{3}\right)} - \frac{i<br /> \, \sqrt{3} + 1}{2 \, {\left(\frac{1}{2} i \, \sqrt{3} +<br /> \frac{1}{2}\right)}^{\left(\frac{1}{3}\right)}} + 1
x_3 = {\left(\frac{1}{2} i \, \sqrt{3} +<br /> \frac{1}{2}\right)}^{\left(\frac{1}{3}\right)} +<br /> \frac{1}{{\left(\frac{1}{2} i \, \sqrt{3} +<br /> \frac{1}{2}\right)}^{\frac{1}{3}}} + 1
which have numerical approximations of
x_1 \approx 0.65270364
x_2 \approx -0.53208889
x_3 \approx 2.8793852
When I run these through Sage's simplify_full() command (five times, even), they just become single fractions.
Is this a CAS simplification thing or are there real numbers that simply cannot exist without complex numbers?