Stress-energy tensor explicitly in terms of the metric tensor

CarlosMarti12
Messages
7
Reaction score
0
I am trying to write the Einstein field equations
$$R_{\mu\nu}-\frac{1}{2}g_{\mu\nu} R=\frac{8\pi G}{c^4}T_{\mu\nu}$$
in such a way that the Ricci curvature tensor $$R_{\mu\nu}$$ and scalar curvature $$R$$ are replaced with an explicit expression involving the metric tensor $$g_{\mu\nu}$$ using the equations $$R=g^{\mu\nu}R_{\mu\nu}$$ (relating the scalar curvature to the trace of the Ricci curvature tensor) and $$R_{\mu\nu}=R^\lambda_{\mu\lambda\nu}$$ (relating the Ricci curvature tensor to the trace of the Riemann curvature tensor). Would anyone be willing to give recommendations on how to proceed, or already know the equation?
 
Physics news on Phys.org
Look up the standard expressions for the Riemann tensor in terms of the Christoffel symbols, and the Christoffel symbols in terms of the metric. It's going to be extremely messy. Consider using a computer algebra system for this; probably either Cadabra or Maxima could do it, and both are free and open source.
 
Stress-Energy tensor deals with the energy content of space. It's the Einstein tensor ##G_{\mu \nu} \equiv R_{\mu \nu} - \frac{1}{2} g_{\mu \nu} R## that you want to write in terms of the metric tensor. Anyway, as Ben said it's going to be extremely messy. See:
http://en.wikipedia.org/wiki/Einstein_tensor#Explicit_form
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top