- 10,398
- 1,577
Suppose I take a disk with a pie-sliced section cut out of it
<br /> \]<br /> \unitlength 1mm<br /> \begin{picture}(90,90)(0,0)<br /> \linethickness{0.3mm}<br /> \multiput(20.75,77.28)(0.13,0.12){29}{\line(1,0){0.13}}<br /> \multiput(17.56,73.41)(0.12,0.14){27}{\line(0,1){0.14}}<br /> \multiput(14.89,69.16)(0.12,0.19){22}{\line(0,1){0.19}}<br /> \multiput(12.77,64.62)(0.12,0.25){18}{\line(0,1){0.25}}<br /> \multiput(11.23,59.84)(0.12,0.37){13}{\line(0,1){0.37}}<br /> \multiput(10.3,54.91)(0.12,0.62){8}{\line(0,1){0.62}}<br /> \multiput(10,49.91)(0.1,1.67){3}{\line(0,1){1.67}}<br /> \multiput(10,49.91)(0.11,-1.67){3}{\line(0,-1){1.67}}<br /> \multiput(10.33,44.9)(0.12,-0.62){8}{\line(0,-1){0.62}}<br /> \multiput(11.28,39.98)(0.12,-0.37){13}{\line(0,-1){0.37}}<br /> \multiput(12.83,35.21)(0.12,-0.25){18}{\line(0,-1){0.25}}<br /> \multiput(14.98,30.68)(0.12,-0.19){22}{\line(0,-1){0.19}}<br /> \multiput(17.67,26.44)(0.12,-0.14){27}{\line(0,-1){0.14}}<br /> \multiput(20.87,22.58)(0.13,-0.12){29}{\line(1,0){0.13}}<br /> \multiput(24.53,19.15)(0.16,-0.12){25}{\line(1,0){0.16}}<br /> \multiput(28.59,16.21)(0.22,-0.12){20}{\line(1,0){0.22}}<br /> \multiput(32.99,13.8)(0.31,-0.12){15}{\line(1,0){0.31}}<br /> \multiput(37.66,11.95)(0.49,-0.12){10}{\line(1,0){0.49}}<br /> \multiput(42.52,10.71)(1,-0.13){5}{\line(1,0){1}}<br /> \put(47.49,10.08){\line(1,0){5.02}}<br /> \multiput(52.51,10.08)(1,0.13){5}{\line(1,0){1}}<br /> \multiput(57.48,10.71)(0.49,0.12){10}{\line(1,0){0.49}}<br /> \multiput(62.34,11.95)(0.31,0.12){15}{\line(1,0){0.31}}<br /> \multiput(67.01,13.8)(0.22,0.12){20}{\line(1,0){0.22}}<br /> \multiput(71.41,16.21)(0.16,0.12){25}{\line(1,0){0.16}}<br /> \multiput(75.47,19.15)(0.13,0.12){29}{\line(1,0){0.13}}<br /> \multiput(79.13,22.58)(0.12,0.14){27}{\line(0,1){0.14}}<br /> \multiput(82.33,26.44)(0.12,0.19){22}{\line(0,1){0.19}}<br /> \multiput(85.02,30.68)(0.12,0.25){18}{\line(0,1){0.25}}<br /> \multiput(87.17,35.21)(0.12,0.37){13}{\line(0,1){0.37}}<br /> \multiput(88.72,39.98)(0.12,0.62){8}{\line(0,1){0.62}}<br /> \multiput(89.67,44.9)(0.11,1.67){3}{\line(0,1){1.67}}<br /> \multiput(89.7,54.91)(0.1,-1.67){3}{\line(0,-1){1.67}}<br /> \multiput(88.77,59.84)(0.12,-0.62){8}{\line(0,-1){0.62}}<br /> \multiput(87.23,64.62)(0.12,-0.37){13}{\line(0,-1){0.37}}<br /> \multiput(85.11,69.16)(0.12,-0.25){18}{\line(0,-1){0.25}}<br /> \multiput(82.44,73.41)(0.12,-0.19){22}{\line(0,-1){0.19}}<br /> \multiput(79.25,77.28)(0.12,-0.14){27}{\line(0,-1){0.14}}<br /> \multiput(75.61,80.73)(0.13,-0.12){29}{\line(1,0){0.13}}<br /> \multiput(24.39,80.73)(0.12,-0.14){213}{\line(0,-1){0.14}}\multiput(50,50)(0.12,0.14){213}{\line(0,1){0.14}}<br /> \end{picture}<br /> <br /> \[<br />
and force the cut ends together to make a complete, circular, planar disk.
I want to figure out the 2d stresses in the disk (for reasons that are somewhat arcane).
What's bothering me most at the moment is that the equilbrium relation is apparently
<br /> \frac{d \sigma_r}{dr} + \frac{\sigma_r - \sigma_\theta}{r} = 0<br />
per
http://www.utm.edu/departments/engin/lemaster/Machine%20Design/Notes%2016.pdf
Here \sigma_r is the radial stress, and
\sigma_\theta is the circumfrential stress.
If I'm interpreting this right, this means that the tangential tension due to \sigma_\theta should induce radial tension, not compression?
This seems totally backwards, but I can't see any sign error in the continuity equations. I think it's backwards because if I stretch a rubber band around my finger, I can feel my finger being compressed (while the rubber band is in tension).
I get the same equations as the URL above form by assuming a stress-energy tensor T^{ij} in cylindrical coordinates and assuming
\sigma_r = T^{rr}
\sigma_\theta = r^2 T^{\theta\theta}
and applying the continuity equation \nabla_a T^{ab} = 0
as per (for example)
http://en.wikipedia.org/wiki/Stress-energy_tensor
<br /> \]<br /> \unitlength 1mm<br /> \begin{picture}(90,90)(0,0)<br /> \linethickness{0.3mm}<br /> \multiput(20.75,77.28)(0.13,0.12){29}{\line(1,0){0.13}}<br /> \multiput(17.56,73.41)(0.12,0.14){27}{\line(0,1){0.14}}<br /> \multiput(14.89,69.16)(0.12,0.19){22}{\line(0,1){0.19}}<br /> \multiput(12.77,64.62)(0.12,0.25){18}{\line(0,1){0.25}}<br /> \multiput(11.23,59.84)(0.12,0.37){13}{\line(0,1){0.37}}<br /> \multiput(10.3,54.91)(0.12,0.62){8}{\line(0,1){0.62}}<br /> \multiput(10,49.91)(0.1,1.67){3}{\line(0,1){1.67}}<br /> \multiput(10,49.91)(0.11,-1.67){3}{\line(0,-1){1.67}}<br /> \multiput(10.33,44.9)(0.12,-0.62){8}{\line(0,-1){0.62}}<br /> \multiput(11.28,39.98)(0.12,-0.37){13}{\line(0,-1){0.37}}<br /> \multiput(12.83,35.21)(0.12,-0.25){18}{\line(0,-1){0.25}}<br /> \multiput(14.98,30.68)(0.12,-0.19){22}{\line(0,-1){0.19}}<br /> \multiput(17.67,26.44)(0.12,-0.14){27}{\line(0,-1){0.14}}<br /> \multiput(20.87,22.58)(0.13,-0.12){29}{\line(1,0){0.13}}<br /> \multiput(24.53,19.15)(0.16,-0.12){25}{\line(1,0){0.16}}<br /> \multiput(28.59,16.21)(0.22,-0.12){20}{\line(1,0){0.22}}<br /> \multiput(32.99,13.8)(0.31,-0.12){15}{\line(1,0){0.31}}<br /> \multiput(37.66,11.95)(0.49,-0.12){10}{\line(1,0){0.49}}<br /> \multiput(42.52,10.71)(1,-0.13){5}{\line(1,0){1}}<br /> \put(47.49,10.08){\line(1,0){5.02}}<br /> \multiput(52.51,10.08)(1,0.13){5}{\line(1,0){1}}<br /> \multiput(57.48,10.71)(0.49,0.12){10}{\line(1,0){0.49}}<br /> \multiput(62.34,11.95)(0.31,0.12){15}{\line(1,0){0.31}}<br /> \multiput(67.01,13.8)(0.22,0.12){20}{\line(1,0){0.22}}<br /> \multiput(71.41,16.21)(0.16,0.12){25}{\line(1,0){0.16}}<br /> \multiput(75.47,19.15)(0.13,0.12){29}{\line(1,0){0.13}}<br /> \multiput(79.13,22.58)(0.12,0.14){27}{\line(0,1){0.14}}<br /> \multiput(82.33,26.44)(0.12,0.19){22}{\line(0,1){0.19}}<br /> \multiput(85.02,30.68)(0.12,0.25){18}{\line(0,1){0.25}}<br /> \multiput(87.17,35.21)(0.12,0.37){13}{\line(0,1){0.37}}<br /> \multiput(88.72,39.98)(0.12,0.62){8}{\line(0,1){0.62}}<br /> \multiput(89.67,44.9)(0.11,1.67){3}{\line(0,1){1.67}}<br /> \multiput(89.7,54.91)(0.1,-1.67){3}{\line(0,-1){1.67}}<br /> \multiput(88.77,59.84)(0.12,-0.62){8}{\line(0,-1){0.62}}<br /> \multiput(87.23,64.62)(0.12,-0.37){13}{\line(0,-1){0.37}}<br /> \multiput(85.11,69.16)(0.12,-0.25){18}{\line(0,-1){0.25}}<br /> \multiput(82.44,73.41)(0.12,-0.19){22}{\line(0,-1){0.19}}<br /> \multiput(79.25,77.28)(0.12,-0.14){27}{\line(0,-1){0.14}}<br /> \multiput(75.61,80.73)(0.13,-0.12){29}{\line(1,0){0.13}}<br /> \multiput(24.39,80.73)(0.12,-0.14){213}{\line(0,-1){0.14}}\multiput(50,50)(0.12,0.14){213}{\line(0,1){0.14}}<br /> \end{picture}<br /> <br /> \[<br />
and force the cut ends together to make a complete, circular, planar disk.
I want to figure out the 2d stresses in the disk (for reasons that are somewhat arcane).
What's bothering me most at the moment is that the equilbrium relation is apparently
<br /> \frac{d \sigma_r}{dr} + \frac{\sigma_r - \sigma_\theta}{r} = 0<br />
per
http://www.utm.edu/departments/engin/lemaster/Machine%20Design/Notes%2016.pdf
Here \sigma_r is the radial stress, and
\sigma_\theta is the circumfrential stress.
If I'm interpreting this right, this means that the tangential tension due to \sigma_\theta should induce radial tension, not compression?
This seems totally backwards, but I can't see any sign error in the continuity equations. I think it's backwards because if I stretch a rubber band around my finger, I can feel my finger being compressed (while the rubber band is in tension).
I get the same equations as the URL above form by assuming a stress-energy tensor T^{ij} in cylindrical coordinates and assuming
\sigma_r = T^{rr}
\sigma_\theta = r^2 T^{\theta\theta}
and applying the continuity equation \nabla_a T^{ab} = 0
as per (for example)
http://en.wikipedia.org/wiki/Stress-energy_tensor
Last edited by a moderator: