Struggling With Part C of Electric Field Calculation

AI Thread Summary
The discussion centers on a user's difficulty with Part C of an electric field calculation, specifically using the equation V = kQ1/r1 + kQ2/r2. The user believes their calculated answer of 8.329 V is incorrect but is unsure why. Other participants suggest that the user clarify their calculations and consider whether they are using the correct equation. They also recommend creating a sketch to visualize the relationship between electric field strength and distance. Overall, the thread emphasizes the importance of sharing detailed work for accurate troubleshooting.
johnio09
Messages
4
Reaction score
0
Homework Statement
Consider a solid conducting sphere with a radius 1.5 cm and charge -4.4pC on it. There is a conducting spherical shell concentric to the sphere. The shell has an inner radius 3.7 cm and outer radius 5.1 cm and a net charge 27.4 pC on the shell. A) denote the charge on the inner surface of the shell by Q'2 and that on the outer surface of the shell by Q ''2 . Find the charge Q''2. Answer in units of pC. B) Find the magnitude of the electric field at point P, midway between the outer surface of the solid conducting sphere and the inner surface of the conducting spherical shell. Answer in units N/C. C) Find the potential V at point P. Assume the potential at r = infinity. Answer in units of volt.
Relevant Equations
E =kQ/r^2
V = kQ/r
I've figured out parts A and B but I'm struggling with Part C. I used the equation V = kQ1/r1 + kQ2/r2 where Q1 = -4.4e-12C ; k = 8.98755e9 r1 = 0.026 m Q2 = 27.4e-12 and r2 = .051-.026 My answer (8.329 V) is wrong but I have no idea why. Please help if you can.
 
Physics news on Phys.org
johnio09 said:
My answer (8.329 V) is wrong but I have no idea why.
I have no idea either why your answer 8.329 V is wrong because my mind-reading abilities are not what they used to be. I can't help you find what's wrong unless you post what you did and how you got that answer.
 
Hello @johnio09 ,
:welcome: ##\qquad## !​

johnio09 said:
I've figured out parts A and B
Perhaps you can enlighten us ?

johnio09 said:
wrong but I have no idea why
How do you know it's wrong ? Because the book answer is different ?

Perhaps you used the wrong equation ? What's the idea behind it ?

Several ways out are feasible. My advice: make a sketch of ##|E| ## vs ##r##.

Oh, and do read the guidelines . Follow them as best you can and we'll get along just fine :smile: !

##\ ##
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top