SU(2) symmetric/antisymmetric combination using young tableaux

hjlim
Messages
4
Reaction score
0
I am pretty confused about how to construct states to make symmetric / anti-symmetric combination so I would like to ask some questions.

For example, for SU(2), states of three spin-half particles can be decomposed as 2 x 2 x 2 = 4 + 2 + 2, 3 irreducible combination with dim 4, 2, 2.

-if I combine three boxes in a row(in young tableaux), making a total symmetric combination,
then [[a, b], c] = (ab + ba) c + c (ab + ba) = abc + bac + bac + cba (right?) (here the large bracket represents symmetric index)
And there should be four in general non-vanishing independent index: 111, 112=211, 221=122, 222(right?)
But as I see, [[1,1],2] != [[1,2],1] for [[1,1],2] = 112 + 112 + 211 + 211 while [[1,2],1] = 121 + 211 + 112 + 121 and [[2,2],1] != [[1,2],2] for similar reason. (it's because c is symmetric only with [a, b], not with the individual a and b). So there seems to be six non-vanishing index.
I wonder what is wrong with my calculation.

-And as I understand, [{a, b}, c] = (ab - ba) c + c(ab - ba) can have two non-vanishing index:
[{1, 2}, 1], [{1, 2}, 2]
And for {[a, b], c} = (ab + ba) c - c (ab + ba), there are two independent non-vanishing index:
{[1,1],2}, {[2,2],1} (or equivalently {[1,2],2})
Is this correct?

-And if I calculate {[1,1],2} of |+>|->|+>, it's 0. But as I calculated directly using CG table, |+>|->|+> is a part of the state whose {[1,1],2} only is 1. So I guess it shouldn't be zero. Is something wrong with this?

Actually there are many other things I get confused but first I would like to know these and then figure out the next.

Thank you very much.
 
Last edited:
Physics news on Phys.org
You wrote:
-if I combine three boxes in a row(in young tableaux), making a total symmetric combination,
then [[a, b], c] = (ab + ba) c + c (ab + ba) = abc + bac + bac + bca (right?)

First you should explain your nomenclature. The brackets, are they anti-commutators?
Why should a totally symmetric representation have the form of the multiple anti-commutators in the form given by you? I also don't understand the right hand side of your equation. I get
abc+bac+cab+cba, so the c never stands in the middle position. Hence it cannot be a totally symmetric combination.
 
You are right. They are my mistakes and I corrected them. But I still don't understand. I'll really appreciate if u can give me some hints.
 
Hm, but you still did not explain why you think that a totally symmetric Young tableaux should have to do anything with [[a, b], c].
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top