Substituting differentials in physics integrals.

AI Thread Summary
The discussion centers on the derivation of rotational kinetic energy from translational kinetic energy using differential substitutions. The original poster starts with the kinetic energy formula and attempts to substitute differentials, raising questions about the validity of their substitutions. They specifically inquire whether additional terms should be included in the differential equations due to the variability of velocity and mass. Responses clarify that the integration process does not require the product rule and that the substitutions made were appropriate for the context. The conversation emphasizes the importance of understanding variable changes in integration without overcomplicating the process.
subsonicman
Messages
20
Reaction score
0
Today I tried to show that rotational kinetic energy was equivalent to standard translational kinetic energy.

So I started with kinetic energy, T = ∫dT. Then, because T=1/2mv^2, I substituted dT=1/2v^2dm and then because m=ρV, I substituted dm=ρdV. Then, after substituting v=ωr, I got the equation for rotational kinetic energy, 1/2Iω^2.

The problem I have is with the substituting differentials. Shouldn't dT=1/2v^2dm+vdvdm because both v and m are varying? Also, shouldn't dm=ρdV+Vdρ? I remember seeing this substitution made when calculating the mass of some shape from its density but I can't seem to justify it from the knowledge I have.

Any help would be appreciated.
 
Physics news on Phys.org
subsonicman said:
Today I tried to show that rotational kinetic energy was equivalent to standard translational kinetic energy.

So I started with kinetic energy, T = ∫dT. Then, because T=1/2mv^2, I substituted dT=1/2v^2dm and then because m=ρV, I substituted dm=ρdV. Then, after substituting v=ωr, I got the equation for rotational kinetic energy, 1/2Iω^2.

The problem I have is with the substituting differentials. Shouldn't dT=1/2v^2dm+vdvdm because both v and m are varying?
1. dT = (1/2)v^2.dm + mv.dv
2. what is dv/dm ?
 
You're confused. You're not doing an integration by parts. You're just doing a change of variable of integration. The product rule makes no sense here.
 
Yeah, I was being stupid. Thanks for the help!
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...

Similar threads

Replies
1
Views
1K
Replies
3
Views
1K
Replies
15
Views
2K
Replies
138
Views
7K
Replies
2
Views
2K
Replies
6
Views
2K
Replies
1
Views
2K
Back
Top