gruba
- 203
- 1
Homework Statement
Find all values a\in\mathbb{R} such that vector space V=P_2(x) is the sum of eigenvectors of linear transformation L: V\rightarrow V defined as L(u)(x)=(4+x)u(0)+(x-2)u'(x)+(1+3x+ax^2)u''(x). P_2(x) is the space of polynomials of order 2.
Homework Equations
-Eigenvalues and eigenvectors
The Attempt at a Solution
First, we find the matrix of L (choose a standard basis \{1,x,x^2\}).
L(1)\Rightarrow L(u)(x)=0x^2+1x+4\Rightarrow [L(1)]= \begin{bmatrix}<br /> 4 \\<br /> 1 \\<br /> 0 \\<br /> \end{bmatrix}
L(x)=0x^2+1x-2\Rightarrow [L(x)]= \begin{bmatrix}<br /> -2 \\<br /> 1 \\<br /> 0 \\<br /> \end{bmatrix}
L(x^2)=(2+2a)x^2+2x+2\Rightarrow [L(1)]= \begin{bmatrix}<br /> 2 \\<br /> 2 \\<br /> 2+2a \\<br /> \end{bmatrix}\Rightarrow [L]_{\mathcal{B}}= \begin{bmatrix}<br /> 4 & -2 & 2 \\<br /> 1 & 1 & 2 \\<br /> 0 & 0 & 2+2a \\<br /> \end{bmatrix}
Next, we find eigenvalues and eigenvectors of [L]_{\mathcal{B}}:
\det([L]_{\mathcal{B}}-\lambda I)=(2+2a-\lambda)(\lambda-3)(\lambda-2)\Rightarrow eigenvalues are \lambda_1=2+2a,\lambda_2=3,\lambda_3=2,a\neq 0,a\neq \frac{1}{2}.
Corresponding eigenvectors are v_1=\begin{bmatrix}<br /> 1 \\<br /> 1 \\<br /> a \\<br /> \end{bmatrix},v_2=\begin{bmatrix}<br /> 2 \\<br /> 1 \\<br /> 0 \\<br /> \end{bmatrix},v_3=\begin{bmatrix}<br /> 1 \\<br /> 1 \\<br /> 0 \\<br /> \end{bmatrix}.
What does it mean that the space V is the sum of eigenvectors of L?