Sum of eigenvectors of linear transformation

gruba
Messages
203
Reaction score
1

Homework Statement


Find all values a\in\mathbb{R} such that vector space V=P_2(x) is the sum of eigenvectors of linear transformation L: V\rightarrow V defined as L(u)(x)=(4+x)u(0)+(x-2)u'(x)+(1+3x+ax^2)u''(x). P_2(x) is the space of polynomials of order 2.

Homework Equations


-Eigenvalues and eigenvectors

The Attempt at a Solution



First, we find the matrix of L (choose a standard basis \{1,x,x^2\}).

L(1)\Rightarrow L(u)(x)=0x^2+1x+4\Rightarrow [L(1)]= \begin{bmatrix}<br /> 4 \\<br /> 1 \\<br /> 0 \\<br /> \end{bmatrix}

L(x)=0x^2+1x-2\Rightarrow [L(x)]= \begin{bmatrix}<br /> -2 \\<br /> 1 \\<br /> 0 \\<br /> \end{bmatrix}

L(x^2)=(2+2a)x^2+2x+2\Rightarrow [L(1)]= \begin{bmatrix}<br /> 2 \\<br /> 2 \\<br /> 2+2a \\<br /> \end{bmatrix}\Rightarrow [L]_{\mathcal{B}}= \begin{bmatrix}<br /> 4 &amp; -2 &amp; 2 \\<br /> 1 &amp; 1 &amp; 2 \\<br /> 0 &amp; 0 &amp; 2+2a \\<br /> \end{bmatrix}

Next, we find eigenvalues and eigenvectors of [L]_{\mathcal{B}}:

\det([L]_{\mathcal{B}}-\lambda I)=(2+2a-\lambda)(\lambda-3)(\lambda-2)\Rightarrow eigenvalues are \lambda_1=2+2a,\lambda_2=3,\lambda_3=2,a\neq 0,a\neq \frac{1}{2}.

Corresponding eigenvectors are v_1=\begin{bmatrix}<br /> 1 \\<br /> 1 \\<br /> a \\<br /> \end{bmatrix},v_2=\begin{bmatrix}<br /> 2 \\<br /> 1 \\<br /> 0 \\<br /> \end{bmatrix},v_3=\begin{bmatrix}<br /> 1 \\<br /> 1 \\<br /> 0 \\<br /> \end{bmatrix}.

What does it mean that the space V is the sum of eigenvectors of L?
 
Physics news on Phys.org
gruba said:

Homework Statement


Find all values a\in\mathbb{R} such that vector space V=P_2(x) is the sum of eigenvectors of linear transformation L: V\rightarrow V defined as L(u)(x)=(4+x)u(0)+(x-2)u&#039;(x)+(1+3x+ax^2)u&#039;&#039;(x). P_2(x) is the space of polynomials of order 2.

Homework Equations


-Eigenvalues and eigenvectors

The Attempt at a Solution



First, we find the matrix of L (choose a standard basis \{1,x,x^2\}).

L(1)\Rightarrow L(u)(x)=0x^2+1x+4\Rightarrow [L(1)]= \begin{bmatrix}<br /> 4 \\<br /> 1 \\<br /> 0 \\<br /> \end{bmatrix}

L(x)=0x^2+1x-2\Rightarrow [L(x)]= \begin{bmatrix}<br /> -2 \\<br /> 1 \\<br /> 0 \\<br /> \end{bmatrix}

L(x^2)=(2+2a)x^2+2x+2\Rightarrow [L(1)]= \begin{bmatrix}<br /> 2 \\<br /> 2 \\<br /> 2+2a \\<br /> \end{bmatrix}\Rightarrow [L]_{\mathcal{B}}= \begin{bmatrix}<br /> 4 &amp; -2 &amp; 2 \\<br /> 1 &amp; 1 &amp; 2 \\<br /> 0 &amp; 0 &amp; 2+2a \\<br /> \end{bmatrix}

Next, we find eigenvalues and eigenvectors of [L]_{\mathcal{B}}:

\det([L]_{\mathcal{B}}-\lambda I)=(2+2a-\lambda)(\lambda-3)(\lambda-2)\Rightarrow eigenvalues are \lambda_1=2+2a,\lambda_2=3,\lambda_3=2,a\neq 0,a\neq \frac{1}{2}.

Corresponding eigenvectors are v_1=\begin{bmatrix}<br /> 1 \\<br /> 1 \\<br /> a \\<br /> \end{bmatrix},v_2=\begin{bmatrix}<br /> 2 \\<br /> 1 \\<br /> 0 \\<br /> \end{bmatrix},v_3=\begin{bmatrix}<br /> 1 \\<br /> 1 \\<br /> 0 \\<br /> \end{bmatrix}.

What does it mean that the space V is the sum of eigenvectors of L?
##V## is the span or linear hull of eigenvectors of ##L##. It means the eigenvectors of ##L## build a basis of the three dimensional vector space ##V=P_2(x)##. (Assuming your calculations are correct.)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top