Solving a Constructible Identity: 1+e to the 2pi/7i and Beyond

  • Thread starter Thread starter happyg1
  • Start date Start date
  • Tags Tags
    Identity
happyg1
Messages
304
Reaction score
0

Homework Statement


hi,
I'm working on constructible things again and in one of the proofs our prof threw out this identity and I just don't know where it came from:
1+e^{\frac{2\pi}{7}i}+e^{\frac{4\pi}{7}i}+e^{\frac{6\pi}{7}i}+e^{\frac{8\pi}{7}i}+e^{\frac{10\pi}{7}i}+e^{\frac{12\pi}{7}i}=\frac{e^(\frac{12\pi}{7}i)^7-1}{e^{\frac{12\pi}{7}i}-1}
HOW did he get that?


Edit: I can't tell if the final term is supposed to be 2pi of 12 pi. I dunno.

Homework Equations





The Attempt at a Solution

 
Last edited:
Physics news on Phys.org
Hint : geometric progression.

The exponents on the Right Hand Side should be 2pi, not 12 pi.
 
x^n-1=(x-1)(1+x+x^2+x^3+x^4+x^5+...x^{n-1})

for n=natural number.
 
Thanks. I see it now.
CC
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top