azatkgz
- 182
- 0
Can someone check this solution.
\lim_{n\rightarrow\infty}\sum^{n}_{i=1}\sqrt{\frac{1}{n^2}+\frac{2i}{n^3}}
=\lim_{n\rightarrow\infty}\frac{1}{n}\sum^{n}_{i=1}\sqrt{1+\frac{2i}{n}}=\int^{1}_{0}\sqrt{1+2x}dx
for u=1+2x->du=2dx
\int^{1}_{0}\frac{\sqrt{u}du}{2}=\frac{1}{3}
Homework Statement
\lim_{n\rightarrow\infty}\sum^{n}_{i=1}\sqrt{\frac{1}{n^2}+\frac{2i}{n^3}}
The Attempt at a Solution
=\lim_{n\rightarrow\infty}\frac{1}{n}\sum^{n}_{i=1}\sqrt{1+\frac{2i}{n}}=\int^{1}_{0}\sqrt{1+2x}dx
for u=1+2x->du=2dx
\int^{1}_{0}\frac{\sqrt{u}du}{2}=\frac{1}{3}