tarheelborn
- 121
- 0
Homework Statement
Sum the series 1^2+2^2+\cdots|n^2 by observing that m^2=2* \dbinom{m}{2} + \dbinom{m}{1} and using the identity \dbinom{0}{k}+ \dbinom{1}{k} + \cdots+ \dbinom{m}{k}= \dbinom{m+1}{k+1}.
Homework Equations
The Attempt at a Solution
I know that 1^2+2^2+\cdots+m^2= 2* \dbinom{1}{2}+ \dbinom{1}{1} + 2* \dbinom{2}{2}+ \dbinom{2}{1} + 2* \dbinom{3}{2} + \dbinom{3}{1} + \cdots + 2* \dbinom{m}{2} + \dbinom{m}{1} but I am not picking up on how to simply this into the sum of the whole series.