Summing sines/cosines (Harmonic Addition Theorem)

  • Thread starter Thread starter omission9
  • Start date Start date
  • Tags Tags
    Addition Theorem
omission9
Messages
5
Reaction score
0
I have a mathematical model which, in part, does a calculation based on the location of certain points on a unit circle.
I am just working in 2d so for some arbitrary values of a,b,c,d,e,f
In the case of the unit circle equally divided so that I have three points on the unit circle (120° apart) this would look like this:
x=a cos (θ) + b cos (θ) + c cos (θ)
y=d sin (θ) + e sin (θ) + f sin (θ)
Now, I want to examine what happens if any two of these points are "free". That is, only one of the points is fixed and the others may individually take on any value from 0° to 360°.
Here is my question:
In this case I believe the model must use the Harmonic Addition Theorem, yes?
I believe this is the case since the two free positions on the circle have the same period but are out of phase with each other since they are moving independent of each other and can take on any arbitrary value. Is that right?
In this case my model would then look like this (where A and B represent the differences in phase)
x=a cos (θ) + (b cos (θ-A) + c cos (θ-B) )
y=d sin (θ) + (e sin (θ-A) + f sin (θ-B))
Is this correct?
 
Mathematics news on Phys.org
omission9 said:
In the case of the unit circle equally divided so that I have three points on the unit circle (120° apart) this would look like this:
x=a cos (θ) + b cos (θ) + c cos (θ)
y=d sin (θ) + e sin (θ) + f sin (θ)

If you are using different points on the circle, you need different arguments i.e. ##\theta_1, \theta_2, \theta_3##.

In any case I believe the formulas you are asking for are the sum-to-product formulas. Look at the bottom of this link: trig formulas, or if you really want the harmonic addition theorem, it's here harmonic addition
 
theorem4.5.9 said:
If you are using different points on the circle, you need different arguments i.e. ##\theta_1, \theta_2, \theta_3##.

In any case I believe the formulas you are asking for are the sum-to-product formulas.

I am not asking for the formulas. I already know those! What am I asking is if this is an appropriate application of the Harmonic Addition Theorem. Is it?
 
In that case I'm not sure what you're asking. I'm not sure what your model is suppose to be or what symmetry you're trying to take advantage of. The harmonic addition theorem is just a formula, so there's not really a wrong application of it.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top