Sums of Independent (but not identically distributed) Random Variables

sv79
Messages
2
Reaction score
0
I am looking for a Hoeffding-type result that bounds the tail of a sum of independent, but not identically distributed random variables. Let X_1,..,X_n be independent exponential random variables with rates k_1,...,k_n. (Note: X_i's are unbounded unlike the case considered by Hoeffding)

Let S= \sum_{i=1}^{n} X_i. I am interested in bounding P(S>a). I am looking for tighter bounds than Markov's Inequality and Chebyshev's Inequality. Is anyone here aware of well-known results in this direction?
 
Last edited:
Physics news on Phys.org
sv79 said:
independent exponential random variables

Are the parameters all distinct? (this would simplify the analysis considerably)
 
Bpet:
Yes, the parameters are all distinct. Perhaps, you are thinking of a Hypoexponential distribution (also called a Generalized Erlang distribution, I think), which in my case it certainly is. The question is can we get a clean (easily usable like the Hoeffding, Chernoff bounds etc.) tail inequality for the sum?
 
I don't know if there are any simple inequalities (simpler than the matrix exponential formula) but maybe some of the Bernstein inequalities (tricky bit is working out the central moment growth rate). Also from memory there are some tail prob inequalities involving an integral of the characteristic function over some small neighbourhood of zero. Sorry I couldn't be of more help but I'm keen to hear how it goes.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top