Calculating Intensity Variation in Superposition of Waves

leopard
Messages
123
Reaction score
0
aw56pu.jpg


Figure on top:
P_{1}= (1/16)W, P_{2}=1W, P_{3}= 16W, and I want to calculate how the intensity varies with \theta

y(r,t) = y_{2}(r,t)[1 + 4e^{i(\phi_{3} - \phi_{2} + kdsin \theta} + \frac{1}{4} e^{i(\phi_{1} - \phi_{2} - kd sin \theta)}]

I understand how to proceed here, I just want to know how to determine whether it's + or - in front of \phis and kdsin \theta


Bottom figure:

P_{1}=P_{2}=P_{3} = 10W, same problem.

y(r,t)=y_{1}(r,t)[1 + e^{i(\phi_{2} - \phi_{1} + kd cos \theta)} + e^{i(\phi_{3} - \phi_{1} + kd sin \theta)}]

Is it just me, or is there an incoherence here, as how to determine the signs? Both are from exam solution manuals at my university, so it should be correct.
 
Physics news on Phys.org
I am having a hard to following the problem setup. Is this some sort of phased array? What is y2?
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top