ma3088
- 4
- 0
Homework Statement
Find \int\int_{S} F dS where S is determined by z=0, 0\leqx\leq1, 0\leqy\leq1 and F (x,y,z) = xi+x2j-yzk.
Homework Equations
Tu=\frac{\partial(x)}{\partial(u)}(u,v)i+\frac{\partial(y)}{\partial(u)}(u,v)j+\frac{\partial(z)}{\partial(u)}(u,v)k
Tv=\frac{\partial(x)}{\partial(v)}(u,v)i+\frac{\partial(y)}{\partial(v)}(u,v)j+\frac{\partial(z)}{\partial(v)}(u,v)k
\int\int_{\Phi} F dS = \int\int_{D} F * (TuxTv) du dv
The Attempt at a Solution
To start off, I'm not sure how to parametrize the surface S. Any help is appreciated.