Surface with Ricci scalar equal to two

Giammy85
Messages
19
Reaction score
0
A two-dimensional Rienmannian manifold has a metric given by
ds^2=e^f dr^2 + r^2 dTHETA^2
where f=f(r) is a function of the coordinate r

Eventually I calculated that Ricci scalar is R=-1/r* d(e^-f)/dr

if e^-f=1-r^2 what this surface is?


In this case R comes to be equal to 2
I've read on wikipedia that Ricci scalar of a sphere with radius r is equal to 2/r^2

So, is this surface a sphere or radius r=1?
 
Physics news on Phys.org
Yes, it is. If you want an explicit coordinate representation in 3-space, it's x=r*cos(theta), y=r*sin(theta), z=sqrt(1-r^2).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top