A Symmetrisation of wave function for fermions

djelovin
Messages
28
Reaction score
0
The wave function for fermions has to be anti-symmetric with respect to exchange of positions of electrons, but what if it depends on wave vector as well. Does they have to be exchanged as well, in other words, for two-electron system what is correct

Ψ(r1,k1,r2,k2) = - Ψ(r2,k1,r1,k2)

or

Ψ(r1,k1,r2,k2) = - Ψ(r2,k2,r1,k1)
 
Physics news on Phys.org
The wave vector and the position are just different representations of the same Hilbert space. You can use either to represent your state but not both at the same time.

That being said, it is the overall state that should be antisymmetric under the exchange of the electrons. If you have an additional degree of freedom that the state depends on (spin comes to mind) then you need to make the full state antisymmetric. If the state in the additional degree of freedom is already antisymmetric your spatial wavefunction will be symmetric. Positronium in the spin-0 state comes to mind.
 
Thanx for quick replay,
That somewhat clarifies my problem.
However I have particles in continuum, in the presence of some potential, that are described by Coulomb (Coulomb-like to be more precise) wave function that does depend on both, wave vector and position at the same time.
https://en.wikipedia.org/wiki/Coulomb_wave_function
The system is in singlet state, so spin related part can be taken out.
 
Last edited:
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
8
Views
1K
Replies
27
Views
3K
Replies
4
Views
1K
Replies
3
Views
2K
Replies
14
Views
4K
Back
Top