I Symmetry transformation in Heisenberg vs Schrödinger Picture

hgandh
Messages
26
Reaction score
2
Symmetry transformations are changes in our point of view that preserve the possible outcomes of experiment:
$$\Psi \rightarrow U(\Lambda) \Psi$$
In the Heisenberg picture, observables in a fixed reference frame evolve according to:
$$P(t) = U^\dagger (t)PU(t)$$ while in the Schrodinger picture, the state vector evolves as $$\Psi (t) = U(t) \Psi$$
Now at a time t, we change our reference frame. The expectation value of the observable in the two pictures is then
$$(U(\Lambda) \Psi, P(t)U(\Lambda) \Psi) $$ in the Heisenberg picture and $$(U(\Lambda) \Psi (t), PU(\Lambda) \Psi (t)) $$ in the Schrodinger picture. However, these do not give equivalent values. Can someone point out where my reasoning is wrong?
 
Physics news on Phys.org
Is your symmetry transformation time-independent? I'm guessing it probably is and, if so, then ##U(\Lambda)## commutes with ##U(t)##, leading to equivalent expectation values, afaics.

HTH.
 
strangerep said:
Is your symmetry transformation time-independent? I'm guessing it probably is and, if so, then ##U(\Lambda)## commutes with ##U(t)##, leading to equivalent expectation values, afaics.

HTH.
No it is a general Lorentz transformation. I believe my mistake was the the time evolution operator itself changes in the new reference frame since the Hamiltonian as seen in this new frame is in general not the same as in the original.
$$U(t) \to U(\Lambda)U(t)U^{-1} (\Lambda)$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top