Tangent to the Point: Solving for b and c

  • Thread starter Thread starter danne89
  • Start date Start date
  • Tags Tags
    Point Tangent
AI Thread Summary
To find the values of b and c for the parabola y=x^2+bx+c such that the line y=2x is tangent at the point (2,4), it is established that the parabola must pass through (2,4). The derivative of the parabola at x=2 must equal the slope of the tangent line, which is 2. By calculating, b is determined to be -2, and substituting back gives c as 4. Thus, the equation of the parabola is y=x^2-2x+4, confirming the tangent condition at the specified point. This solution effectively demonstrates the relationship between the parabola and the tangent line.
danne89
Messages
180
Reaction score
0
Consider the pababola y=x^2+bx+c. Find the values of b and c such that the line y=2x is tangent to the point (2,4).

I've no clue at all...
 
Physics news on Phys.org
Really, no clue at all? Did it not occur to you that if the line is tangent to the parabola at the point (2,4), then the parabola must go through (2,4)- that is, that
4= 22+ b(2)+ c.

Has no one told you that the derivative at a point IS the slope of the tangent line at that point? What is the slope of the line y= 2x? Can you find the derivative of
y= x2+ bx+ c at x= 2?
 
danne89 said:
Consider the pababola y=x^2+bx+c. Find the values of b and c such that the line y=2x is tangent to the point (2,4).

I've no clue at all...
You have y = 2x as the tangent line.. and you know that y' = 2x + b and thus you can substitute x = 2 into y' to get y' = 4 + b and from the question you know y' = 2... and so 2 = 4 + b; b = -2
Next step is finding c, just plug in:
4 = 4 - 4 + c
c = 4
And the parabola is y = x^2 - 2x + 4
And to test it..
y' = 2x - 2
And at the point (2,4); y - 4 = 2(x-2); y = 2x - 4 + 4 = 2x
And that's the answer...
Or I could be completely wrong. :approve:
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top