Tensor Force Operator Between Nucleons: Spin & Position

kelly0303
Messages
573
Reaction score
33

Homework Statement


The tensor force operator between 2 nucleons is defined as ##S_{12}=3\sigma_1\cdot r\sigma_2\cdot r - \sigma_1\cdot \sigma_2##. Where r is the distance between the nucleons and ##\sigma_1##and ##\sigma_2## are the Pauli matrices acting on each of the 2 nucleons. Rewrite ##S_{12}## only in terms of the spin operator S and relative position r.

Homework Equations

The Attempt at a Solution


For the second part of the equation I tried this. Using the fact that ##S=\sigma_1+\sigma_2## we have ##\sigma_1\sigma_2=(S^2-\sigma_1-\sigma_2)/2=(S^2-6)/2##. For the first part I was thinking to use this expression ##(\sigma\cdot a)(\sigma \cdot b) = a\cdot b + i(a\times b)\sigma## As in my case a and b are both r, the cross product would vanish and the first term would be just ##r^2##. But I am not sure if I can do that, as my ##\sigma## is not the same in both cases. Can someone tell me if I can use that formula or give me some hint or how to approach the first part of the equation? Thank you!
 
Physics news on Phys.org
kelly0303 said:

Homework Statement


The tensor force operator between 2 nucleons is defined as ##S_{12}=3\sigma_1\cdot r\sigma_2\cdot r - \sigma_1\cdot \sigma_2##. Where r is the distance between the nucleons and ##\sigma_1##and ##\sigma_2## are the Pauli matrices acting on each of the 2 nucleons. Rewrite ##S_{12}## only in terms of the spin operator S and relative position r.

Homework Equations

3. The Attempt at a Solution [/B]
For the second part of the equation I tried this. Using the fact that ##S=\sigma_1+\sigma_2## we have ##\sigma_1\sigma_2=(S^2-\sigma_1-\sigma_2)/2=(S^2-6)/2##. For the first part I was thinking to use this expression ##(\sigma\cdot a)(\sigma \cdot b) = a\cdot b + i(a\times b)\sigma## As in my case a and b are both r, the cross product would vanish and the first term would be just ##r^2##. But I am not sure if I can do that, as my ##\sigma## is not the same in both cases. Can someone tell me if I can use that formula or give me some hint or how to approach the first part of the equation? Thank you!
S = \frac{1}{2} (\sigma_{1} + \sigma_{2}) \ \ \Rightarrow \ \ S^{2} = \frac{1}{2} ( 3 + \sigma_{1} \cdot \sigma_{2} ) . \ \ \ \ (1)S \cdot r = \frac{1}{2} \left( ( \sigma_{1} \cdot r ) + ( \sigma_{2} \cdot r ) \right) \ \ \Rightarrow \ \ (S \cdot r)^{2} = \frac{1}{2} \left( r^{2} + ( \sigma_{1} \cdot r )(\sigma_{2} \cdot r ) \right) . \ \ \ \ (2) Substitute (1), (2) in S_{12} = \frac{3}{r^{2}} ( \sigma_{1} \cdot r )( \sigma_{2} \cdot r ) - \sigma_{1} \cdot \sigma_{2} , to find S_{12} = \frac{6}{r^{2}} ( S \cdot r )^{2} - 2S^{2} .
 
Last edited:
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top