The angular velocity of a process control motor is (21−(1/2t^2)) rad/s

AI Thread Summary
The angular velocity of a process control motor is given by the equation (21−(1/2t^2)) rad/s. The motor reverses direction at 6.5 seconds, determined by setting the angular velocity to zero. To find the angle turned between t = 0 s and t = 6.5 s, the user attempted to use kinematic equations but encountered confusion regarding the integration of the angular velocity function. It was suggested to integrate the velocity function to find the angular displacement, noting that the constant of integration cancels out when evaluating a definite integral. The discussion emphasizes the importance of applying calculus principles to solve rotational motion problems effectively.
zapzapper
Messages
3
Reaction score
0

Homework Statement


The angular velocity of a process control motor is (21−(1/2t^2)) rad/s, where t is in seconds.

1.) At what time does the motor reverse direction?

2.) Through what angle does the motor turn between t =0 s and the instant at which it reverses direction?

Homework Equations


angular velocity of a process control motor is (21−(1/2t^2)) rad/s

The Attempt at a Solution


For part 1 I just set the equation equal to 0 and got a time of 6.5 sec, which is correct

For part 2, I have no idea what to do. Nothing is working, so if you could help, that would be great! I have tried taking the derivative to find acceleration, which is -t, and then plugging that into θf = θi + ωi(t) + 1/2a(t^2). I set θi = 0 because I figured there would initially be no angle. I set ωi = 21 because at t=0, ω = 21. I set t= 6.5, and a=-6.5...so my equation was θf = 0 + 21(6.5s) + 1/2(-6.5)(6.5s^2), but the answer came to like -0.8125 rad? is that right? it seems odd to me...
 
Last edited:
Physics news on Phys.org
zapzapper said:

Homework Statement


The angular velocity of a process control motor is (21−(1/2t^2)) rad/s, where t is in seconds.

1.) At what time does the motor reverse direction?

2.) Through what angle does the motor turn between t =0 s and the instant at which it reverses direction?


Homework Equations


angular velocity of a process control motor is (21−(1/2t^2)) rad/s


The Attempt at a Solution


For part 1 I just set the equation equal to 0 and got a time of 6.5 sec, which is correct

For part 2, I have no idea what to do. Nothing is working, so if you could help, that would be great! I have tried taking the derivative to find acceleration, which is -t, and then plugging that into θf = θi + ωi(t) + 1/2a(t^2). I set θi = 0 because I figured there would initially be no angle. I set ωi = 21 because at t=0, ω = 21. I set t= 6.5, and a=-6.5...so my equation was θf = 0 + 21(6.5s) + 1/2(-6.5)(6.5s^2), but the answer came to like -0.8125 rad? is that right? it seems odd to me...

Hi zapzapper, Welcome to Physics Forums.

It appears that you're familiar with calculus since you mentioned taking a derivative.

Suppose this were a linear motion problem and you were given a velocity function v(t). How would you go about finding d(t) using calculus? You can apply the same method to rotational motion where velocity is represented by the variable ω and distance by θ.
 
ok, I'll integrate the function
 
Last edited:
gneill said:
Hi zapzapper, Welcome to Physics Forums.

It appears that you're familiar with calculus since you mentioned taking a derivative.

Suppose this were a linear motion problem and you were given a velocity function v(t). How would you go about finding d(t) using calculus? You can apply the same method to rotational motion where velocity is represented by the variable ω and distance by θ.

oh ok, so I just integrate the function then?, If I integrate it then I get (21t - (1/6t^3) + c), what do i do with the constant c though?
 
You are trying to find the total angular displacement between two known times. What happens to the constant of integration when you evaluate a definite integral?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top