The (asserted) equivalence of first partial derivatives

Larry Cosner
Messages
5
Reaction score
2
In the solution to a differential-equation problem -- proof of the existence of an integrating factor -- the following statements are made regarding a general function "u(xy)" [that is, a function of two variable that depends exclusively on the single factor "x*y"]:

------------------------------------

"Let xy = t

Therefore ux = uy = ut"

-------------------------------------

I'm having a hard time seeing this as innately true. The first two functions are the partial derivatives of the function u, with respect to the two variables. If one takes a simple function like u(xy) = 3xy, then the first partial derivatives are:

ux = 3y and uy = 3x; and similarly, if one addresses the substituted variable, ut = 3.

And these are not equal.

Now I certainly see, given t = xy, that dt/dx = y and dt/dy = x. This leads to dx/dt = 1/y and dy/dt = 1/x.

Using this, one can show ut = (du/dx)(dx/dt) = (3y)(1/y) = 3. Similarly for the equivalency of ut = (du/dy)(dy/dt).

But I'm not seeing how this translates into ux = uy = ut?

And it is this exact equivalence that is used further down in the proof (which is why I care).

Thanks in advance for helping me see what I'm missing.
 
Physics news on Phys.org
Seems weird. Assuming ## u_x ## means ## \frac{\partial}{\partial x}u(x,y) ## etc. then as you find, ## u_x=y u_t ## and ## u_y=x u_t ##.
 
Perhaps you could post the entire problem or differential equation? From what you've given so far they're not equal, but perhaps we're missing some other condition or assumption
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top