The Convergence Of SOR iteration method

sigh1342
Messages
30
Reaction score
0

Homework Statement


show SOR iteration method converges for the system.
$$6x+4y+2z=11$$
$$4x+7y+4z=3$$
$$2x+4y+5=-3$$


Homework Equations



if the coeff. matrix is positive definite matrix and 0≤ω≤2. Then SOR converge for any initial guess.
Or if $$ρ(T_{ω})$$≥|ω-1|, then SOR converge for any initial guess.ρ(T) means the largest magnitude of all eigenvalue of T.$$T_{ω}=(I − ωL)^{-1} ((1 − ω)I + ωU)$$
Or any norm of $$T_{ω} <1 $$ Then SOR converge for any initial guess

The Attempt at a Solution


I found that the coeff. matrix is not positive definite matrix . and the ρ(T) is hard to find .
Any other method ? Or what I miss. Thanks you :blushing:
 
Physics news on Phys.org
sigh1342 said:
I found that the coeff. matrix is not positive definite matrix

Can you explain how you drew that conclusion? The coefficient matrix has positive eigenvalues.
 
fzero said:
Can you explain how you drew that conclusion? The coefficient matrix has positive eigenvalues.

Oh I find that the value $$x^tAx$$ that I was computed is wrong . :frown:
Thanks you so much :-p
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top