The Deutsch problem in quantum computation

ptabor
Messages
14
Reaction score
0
I'm doing a research paper on the deutsch problem in QC. My google inquiries have turned up numerous papers on solutions to the problem, but I am having difficulty finding a clear formulation of the problem itself.

Can someone point me in the direction of this information?
 
Physics news on Phys.org
http://www.cs.xu.edu/~kinne/quantum/deutche.html

In short,
You have a function f: {0,1} --> {0,1} (there are four possible functions like this). You want to know the answer to the question - is f(0)=f(1)?. A classical circuit (and hence, any classical algorithm) must evaluate f twice: you must evaluate f(0), and also f(1); and then you compare them. With Deutsch's algorithm, if you have a quantum computer you can exploit superposition to answer the question with only one evaluation of f.
 
To clarify what is on that page:

The Hadamard operator H operates on a single qubit, and its matrix representation is

\frac{1}{\sqrt{2}}\left( \begin{array}1 &amp; 1 \\ 1 &amp; -1<br /> \end{array} \right)

The unitary operator corresponding to f (operates on two qubits) is:

f(x,y)=(x,y+f(x)) for eigenstates x,y, and extended to arbitrary x,y by linearity.

(i.e., f(a0+b1, c0+d1) = acf(0,0)+adf(0,1)+...)
 
The function can take input over x = 0,1,2,..2^n-1 for any integer n.

The key is that you are promised that the function is either constant, or it is balanced. "Constant" means that either f(x)=1 or f(x)=0 for every input x, "balanced" means that f(x)=1 for exactly half of the possible inputs and f(x)=0 for the other half of the inputs.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...

Similar threads

Replies
19
Views
4K
Replies
14
Views
2K
Replies
2
Views
3K
Replies
2
Views
2K
Replies
4
Views
1K
Replies
4
Views
3K
Replies
11
Views
3K
Back
Top