The Eigenfunction of a 2-electron system

Settho
Messages
4
Reaction score
0
Homework Statement
Show that the wave function is an eigenfunction of the hamiltonian.
Relevant Equations
Hamiltonian, wave function, energy and Born radius
Hello!

I am stuck at the following question:
Show that the wave function is an eigenfunction of the Hamiltonian if the two electrons do not interact, where the Hamiltonian is given as;
Schermafbeelding 2019-04-28 om 20.33.57.png


the wave function and given as;
Schermafbeelding 2019-04-28 om 20.34.45.png


and the energy and Born radius are given as:
Schermafbeelding 2019-04-28 om 20.51.31.png


and I used this for ∇ squared:
Schermafbeelding 2019-04-28 om 20.50.07.png


I am stuck at the end of the calculation. I know Z = 2, but somehow I don't end up with the energy, which you need to show that it is indeed an eigenfunction. This is what I get and where I am stuck at:
Schermafbeelding 2019-04-28 om 20.46.42.png


and even when I substitute a0 in this formula, I don't get the energy value. I honestly don't know where it did go wrong.
If someone is able to help, that would be great.
 
Physics news on Phys.org
You need to substitute the two-electron wavefunction$$\psi(r_1,r_2)=\psi(r_1)\psi(r_2)=\frac{1}{\sqrt{\pi}}\left( \frac{Z}{a_0}\right)^{3/2}e^{-\frac{Z}{a_0}r_1}\frac{1}{\sqrt{\pi}}\left( \frac{Z}{a_0}\right)^{3/2}e^{-\frac{Z}{a_0}r_2}$$in your Hamiltonian. The energy is a constant and should have no ##r## dependence.
 
Last edited:
But isn't it just the idea to split the Hamiltonian in electron 1 and electron 2 instead of the two-electron wave function?
 
Settho said:
I am stuck at the end of the calculation. I know Z = 2, but somehow I don't end up with the energy, which you need to show that it is indeed an eigenfunction. This is what I get and where I am stuck at:
View attachment 242595
The ##-\hbar^2 / 2m## term doesn't factor out of all terms.
 
DrClaude said:
The ##-\hbar^2 / 2m## term doesn't factor out of all terms.

Your simple suggestion made me solve the problem. Thank you so much!
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top