The Forward Direction of "V: a + iTa=b+iTb, iff a=b"

  • Thread starter Thread starter CoachZ
  • Start date Start date
  • Tags Tags
    Direction
CoachZ
Messages
26
Reaction score
0
Let V be a complex inner product space and T a self-adjoint linear operator on V.

I'm trying to show a + iTa = b + iTb, iff a = b. The converse is trivial. The forward direction is getting me for some reason. Perhaps it's too late on a Friday night that my mind is completely gone. Any suggestions...
 
Physics news on Phys.org
CoachZ said:
Let V be a complex inner product space and T a self-adjoint linear operator on V.

I'm trying to show a + iTa = b + iTb, iff a = b. The converse is trivial. The forward direction is getting me for some reason. Perhaps it's too late on a Friday night that my mind is completely gone. Any suggestions...
So a- b= -iT(a- b) and T(a- b)= i(a- b). Either a- b= 0 or i is an eigenvalue of T. But all eigenvalues of self-adjoint operators are real.
 
Haha, I woke up this morning thinking about I + iT and I - iT, and how they are both non-singular, which uses the theorem of real eigenvalues, and I was thinking that a + iTa = b + iTb probably uses similar concepts and ideas to solve. Thanks for the help!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top