The hamiltonian of a half spin particle

mogulman5
Messages
1
Reaction score
0

Homework Statement



The Hamiltonian for a spin-half particle is

H = 2a/ħ (Sx + Sy)

where a is a positive constant and Sx , Sy are the x and y components of the spin. Initially (at time t=0) the particle is in the state

|ψ> = (1/√2) (|↑>+|↓>)

where up and down arrows denote eigenstates of the z component of the spin.

a) Calculate the expectation value of the energy <E> and of the three components of the spin <Sx>, <Sy> and <Sz> at t=0.
b) What is the probability that a measurement of the x component of the spin at t=0 will give the value +ħ/2 ?
c) Find the eigenstates and eigenvalues of the Hamiltonian.
d) Find the state |ψ(t)> at a later time t.
e) What is the probability that a measurement of the x component of the spin at time t will give the value +ħ/2 ?

This is a practice exam question that I'm using to prepare for my final. Any help would be greatly appreciated. It's tough being the only Mechanical Engineer in a group full of physics majors. Thanks to anyone who can help me out.



Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
What's your first step? Any relevant equations?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top