MHB The height of a section of overlapping circles.

Click For Summary
The discussion centers on calculating the height (y) of the overlapping section between two identical circles with a radius of one. The circumference of the circles is established as 2π, with the overlapping segment representing 1/6th of this circumference. A right triangle is formed using the center of a circle, the midpoint of the segment y, and a point of intersection, leading to the identification of a 30-60-90 triangle. The relationship between the sides of this triangle and the use of trigonometric functions and the Pythagorean theorem are explored to derive y. Ultimately, the exact value of y is determined to be 2 - √3.
Zekes
Messages
4
Reaction score
0
Say I have two identical circles, both of radii of one, overlapping, as shown in the diagram below:

View attachment 9059

In this diagram, x is the circumference of the circles, and the bit of the bottom circle which is drawn blue (the overlapping bit) is 1/6th of the whole circumference.

What I'm looking for is y, which is this:

View attachment 9060

Now, working out x is easy - it's 2 \pi r, thus the overlapping bit is 1/3 \pi r. But how do I proceed in finding y from here? Help is much appreciated! Thanks!
 

Attachments

  • rDBQC.png
    rDBQC.png
    3.5 KB · Views: 133
  • kIcDZ.png
    kIcDZ.png
    9 KB · Views: 126
Mathematics news on Phys.org
Imagine a right triangle from the centre of a circle, the midpoint of the segment y and one of the points of intersection of the circles. This triangle has hypotenuse 1 and side opposite the centre of the circle 1/2. Also, this triangle is 30-60-90. Can you use some basic trig and the Pythagorean theorem to find y?
 
Greg said:
Imagine a right triangle from the centre of a circle, the midpoint of the segment y and one of the points of intersection of the circles. This triangle has hypotenuse 1 and side opposite the centre of the circle 1/2. Also, this triangle is 30-60-90. Can you use some basic trig and the Pythagorean theorem to find y?

Although I know of trigonometry and Pythagoras, I don't see how having a point of the triangle at the midpoint of y can help me find the whole of y.

Also using some segment formulas I came up with I plugged in my values to get $$y/2=1(1-\cos ((\pi /3)/2))$$ which gives me a formula $$\approx$$ 0.133975 however this is not exact and I need an exact answer.
 
Last edited:
$$\frac{y}{2}=1-\cos30=1-\frac{\sqrt3}{2}=\frac{2-\sqrt3}{2}\implies y=2-\sqrt3$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K