The math involved in bending a rod

  • Thread starter Thread starter camacru
  • Start date Start date
  • Tags Tags
    Bending Rod
camacru
Messages
13
Reaction score
0
I have a door lever which has a 90 deg. bend. I need to calculate the length that this lever would have to be if it were in the form of a straight rod, prior to being bent.

I know I have all the input data, I'm just not sure how to express this algebraically. For example, I know that the inner radius of the bend is 0.416", and the outer radius is 0.892". Based on this data, how can I calculate the length of the lever prior to being bent?

Thanks in advance!
 
Mathematics news on Phys.org
That would depend on how much the rod material can stretch and/or compress. Assuming no stretching, then the outer radius would consist of a quarter-circle having the same radius (0.892"). That arc would then have a length of 1/4 of the circumference of a 0.892" radius circle. Calculate that then add the straight lengths to it.

C=2\pi r

\frac{1}{4}C=\frac{\pi r}{2}

If the material stretches, this won't be accurate though.

It would be much easier to take a piece of rod of a known length, bend it, and cut off the amount you don't need. Subtract that amount (that was cut off) from your original length. That will give you the total length needed.
 
It is a nontrivial engineering problem and the answer will depend on properties of the material.

To the lowest approximation, it would probably be most accurate to assume that the outer half of the rod will stretch and the inner half will compress. So, the total length ~ straight lengths + pi r_c/2 where r_c = (0.416+0.892)/2.

My advice would be to do this experimentally, as the previous poster suggested.
 
Thanks for the help guys. The lever is actually made out of brass, so there is definitely some degree of stretching and compression. Here's the problem. Basically, what I am doing is a simple exercise in reverse engineering. I have a finished lever sample, and I am trying to duplicate it in Solidworks, but I need to model it in the form of a straight rod because it will be lathed then bent. I modeled the lever, applied a flex modifier and bent the digital rod to 90deg. However, when I supplied the drawings to the shop, the bend was completely off. Perhaps the problem is as simple as not having used the proper bending wheel during the bending process. Nonetheless, I want to re-evaluate my design, and mathematically calculate the dimensions to determine if my model was flawed to begin with. Do you think this can be done without having the exact physical properties of the material?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top